Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Multipliers of $ L\sp p\sb E$. I


Author: Daniel M. Oberlin
Journal: Trans. Amer. Math. Soc. 221 (1976), 187-198
MSC: Primary 43A22
DOI: https://doi.org/10.1090/S0002-9947-1976-0402417-9
MathSciNet review: 0402417
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let X be an abelian group, the character group of a compact group G. For a subset E of X let $ L_E^p$ be the subspace of E-spectral functions in $ {L^p}(G)$. We show that if X is infinite and $ 1 \leqslant p < 2$, then E can be chosen so that not every multiplier of $ \widehat{L_E^p}$ extends to a multiplier of $ \widehat{{L^p}}(G)$.


References [Enhancements On Off] (What's this?)

  • [1] A. Bonami, Étude des coefficients de Fourier des fonctions de $ {L^p}(G)$, Ann. Inst. Fourier (Grenoble) 20 (1970), fasc. 2, 335-402 (1971). MR 44 #727. MR 0283496 (44:727)
  • [2] R. Edwards, Fourier series: A modern introduction. Vol. II, Holt, Rinehart and Winston, New York, 1967. MR 36 #5588. MR 0222538 (36:5588)
  • [3] R. Edwards and K. Ross, Helgason's number and lacunarity constants, Bull. Austral. Math. Soc. 9 (1973), 187-218. MR 49 #5735. MR 0340985 (49:5735)
  • [4] R. Edwards, E. Hewitt and K. Ross, Lacunarity for compact groups. I, Indiana Univ. Math. J. 21 (1971/72), 787-806. MR 45 #6981. MR 0297929 (45:6981)
  • [5] A. Figà-Talamanca and G. I. Gaudry, Multipliers of $ {L^p}$ which vanish at infinity, J. Functional Analysis 7 (1971), 475-486. MR 43 #2429. MR 0276689 (43:2429)
  • [6] A. Figà-Talamanca and D. Rider, A theorem of Littlewood and lacunary series for compact groups, Pacific J. Math. 16 (1966), 505-514. MR 34 #6444. MR 0206626 (34:6444)
  • [7] E. Hewitt and K. Ross, Abstract harmonic analysis. Vol. II: Structure and analysis for compact groups. Analysis on locally compact Abelian groups, Die Grundlehren der math. Wissenschaften, Band 152, Springer-Verlag, New York and Berlin, 1970. MR 41 #7378; erratum, 42, p. 1825. MR 0262773 (41:7378)
  • [8] E. Hewitt and K. Stromberg, Real and abstract analysis. A modern treatment of the theory of functions of a real variable, Springer-Verlag, New York and Berlin, 1965. MR 32 #5826. MR 0188387 (32:5826)
  • [9] D. Oberlin, Multipliers of closed ideals of $ {L^p}({D^\infty })$, Bull. Amer. Math. Soc. 81 (1975), 479-481. MR 0370061 (51:6290)
  • [10] -, Multipliers of $ L_E^p$. II, Studia Math. (to appear).
  • [11] J. Peyrière and R. Spector, Sur les multiplicateurs radiaux de $ F{L^p}(G)$, pour un groupe abélien localement compact totalement discontinu, C. R. Acad. Sci. Paris Sér. A-B 269 (1969), A973-A974. MR 41 #736. MR 0251458 (40:4686)
  • [12] J. Stafney, Approximation of $ {W_p}$-continuity sets by p-Sidon sets, Michigan Math. J. 16 (1969), 161-176. MR 40 #632. MR 0247364 (40:632)
  • [13] A. Zygmund, Trigonometric series. Vol. II, Cambridge Univ. Press, New York, 1959. MR 21 #6498. MR 0107776 (21:6498)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 43A22

Retrieve articles in all journals with MSC: 43A22


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1976-0402417-9
Keywords: Multiplier, translation invariant subspace of $ {L^p}(G)$
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society