Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Inclusions and noninclusion of spaces of convolution operators


Authors: Michael G. Cowling and John J. F. Fournier
Journal: Trans. Amer. Math. Soc. 221 (1976), 59-95
MSC: Primary 43A22
DOI: https://doi.org/10.1090/S0002-9947-1976-0493164-6
MathSciNet review: 0493164
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let G be an infinite, locally compact group. Denote the space of convolution operators, on G, of strong type $ (p,q)$ by $ L_p^q(G)$. It is shown that, if $ \vert 1/q - 1/2\vert < \vert 1/p - 1/2\vert$, then $ L_q^q(G)$ is not included in $ L_p^p(G)$. This result follows from estimates on the norms, in these spaces, of Rudin-Shapiro measures. The same method leads to a simple example of a convolution operator that is of strong type (q, q) for all q in the interval $ (p,p')$ but is not of restricted weak type (p, p) or of restricted weak type $ (p',p')$. Other statements about noninclusion among the spaces $ L_p^q(G)$ also follow from various assumptions about G. For instance, if G is unimodular, but not compact, $ 1 \leqslant p,q,r,s \leqslant \infty $, with $ p \leqslant q$, and $ \min (s,r') < \min (q,p')$, then $ L_p^q(G)$ is not included in $ L_r^s(G)$.

Using Zafran's multilinear interpolation theorem for the real method, it is shown that, if $ 1 < p < 2$, then there exists a convolution operator on G that is of weak type (p, p) but not of strong type (p, p); it is not known whether such operators exist when $ p > 2$, but it is shown that if $ p \ne 1,2,\infty $, then there exists a convolution operator that is of restricted weak type (p, p) but is not of weak type (p, p).

Many of these results also hold for the spaces of operators that commute with left translation rather than right translation. Further refinements are presented in three appendices.


References [Enhancements On Off] (What's this?)

  • [Blo] A. P. Blozinski, Convolution of $ L(p,q)$ functions, Proc. Amer. Math. Soc. 32 (1972), 237-240. MR 44 #5724. MR 0288526 (44:5724)
  • [BE] B. Brainerd and R. E. Edwards, Linear operators which commute with translations. I, Representation theorem, J. Austral. Math. Soc. 6 (1966), 289-327. MR 34 #6542. MR 0206725 (34:6542)
  • [Bri] J. Brillhart, On the Rudin-Shapiro polynomials, Duke Math. J. 40 (1973), 335-353. MR 47 #3645. MR 0315096 (47:3645)
  • [BB] P. L. Butzer and H. Berens, Semi-groups of operators and approximation, Die Grundlehren der math. Wissenschaften, Band 145, Springer-Verlag, New York, 1967. MR 37 #5588. MR 0230022 (37:5588)
  • [Cal] A.-P. Calderón, Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), 113-190. MR 29 #5097. MR 0167830 (29:5097)
  • [Coi] R. R. Coifman, Remarks on weak type inequalities for operators commuting with translations, Bull. Amer. Math. Soc. 74 (1968), 710-714. MR 37 #6687. MR 0231132 (37:6687)
  • [Dos] R. Doss, Some inclusions in multipliers, Pacific J. Math. 32 (1970), 643-646. MR 41 #5892. MR 0261276 (41:5892)
  • [Ebe] S. E. Ebenstein, $ \Lambda (p)$ sets and Sidon sets, Proc. Amer. Math. Soc. 36 (1972), 619-620. MR 46 #9649. MR 0310551 (46:9649)
  • [EH] R. E. Edwards and E. Hewitt, Pointwise limits for sequences of convolution operators, Acta Math. 113 (1965), 181-218. MR 31 #1522. MR 0177259 (31:1522)
  • [EP] R. E. Edwards and J. F. Price, A naively constructive approach to boundedness principles, with applications to harmonic analysis, Enseignement Math. (2) 16 (1970), 255-296 (1971). MR 45 #2497. MR 0293420 (45:2497)
  • [EL] P. Eymard and N. Lohoué, Sur la racine carrée du noyau de Poisson dans les espaces symetriques, et une conjecture de E. M. Stein, Ann. Sci. École Norm Sup. 8 (1975), 179-188. MR 0383008 (52:3890)
  • [FS] C. Fefferman and E. M. Stein, $ {H^p}$-spaces of several variables, Acta Math. 129 (1972), 137-193. MR 0447953 (56:6263)
  • [F-T] A. Figà-Talamanca, Multipliers of p-integrable functions, Ph. D. Thesis, University of California at Los Angeles, 1964. MR 0165036 (29:2327)
  • [F-TP 1] A. Figà-Talamanca and J. F. Price, Applications of random Fourier series over compact groups to Fourier multipliers, Pacific J. Math. 43 (1972), 431-441. MR 47 #7330. MR 0318784 (47:7330)
  • [F-TP 2] -, Rudin-Shapiro sequences on compact groups, Bull. Austral. Math. Soc. 8 (1973), 241-245. MR 47 #3908. MR 0315359 (47:3908)
  • [Fou] J. J. F. Fournier, Multipliers of weak type, University of British Columbia, 1973 (typescript).
  • [Gar] A. M. Garsia, Topics in almost everywhere convergence, Lectures in Advanced Math., 4, Markham, Chicago, Ill., 1970. MR 41 #5869. MR 0261253 (41:5869)
  • [Gau] G. I. Gaudry, Bad behaviour and inclusion results for multipliers of type (p, q), Pacific J. Math. 35 (1970), 83-94. MR 42 #6515. MR 0271632 (42:6515)
  • [GI] G. I. Gaudry and I. R. Inglis, Approximation of multipliers, Proc. Amer. Math. Soc. 44 (1974), 381-384. MR 0340970 (49:5720)
  • [Gil] J. E. Gilbert, $ {L^p}$-Convolution operators and tensor products of Banach spaces. I (to appear). MR 0394048 (52:14854)
  • [Gre] F. P. Greenleaf, Invariant means on topological groups and their applications, Van Nostrand Math. Studies, no. 16, Van Nostrand Reinhold, New York, 1969. MR 40 #4776. MR 0251549 (40:4776)
  • [Her 1] C. S. Herz, The theory of p-spaces with an application to convolution operators, Trans. Amer. Math. Soc. 154 (1971), 69-82. MR 42 #7833. MR 0272952 (42:7833)
  • [Her 2] C. S. Herz, Harmonic synthesis for subgroups, Ann. Inst. Fourier (Grenoble) 23 (1973), fasc. 3, 91-125. MR 0355482 (50:7956)
  • [HR] E. Hewitt and K. A. Ross, Abstract harmonic analysis. I, II, Die Grundlehren der math. Wissenschaften, Bänd 115, 152, Springer-Verlag, Berlin and New York, 1963, 1970. MR 28 #158; 41 #7378, erratum, 42, p. 1825. MR 0262773 (41:7378)
  • [Hun] R. A. Hunt, On $ L(p,q)$ spaces, Enseignement Math. (2) 12 (1966), 249-276. MR 36 #6921. MR 0223874 (36:6921)
  • [Kah] J.-P. Kahane, Séries de Fourier absolument convergentes, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 50, Springer-Verlag, Berlin and New York, 1970. MR 43 #801. MR 0275043 (43:801)
  • [Kat] Y. Katznelson, An introduction to harmonic analysis, Wiley, New York, 1968. MR 40 #1734. MR 0248482 (40:1734)
  • [KS] R. A. Kunze and E. M. Stein, Uniformly bounded representations and harmonic analysis of the $ 2 \times 2$ real unimodular group, Amer. J. Math. 82 (1960), 1-62. MR 29 #1287. MR 0163988 (29:1287)
  • [Lar] R. Larsen, The multiplier problem, Lecture Notes in Math., vol. 105, Springer-Verlag, Heidelberg and New York, 1969. MR 0435737 (55:8694)
  • [LP] J.-L. Lions and J. Peetre, Sur une classe d'espaces d'interpolation, Inst. Hautes Études Sci. Publ. Math. No. 19 (1964), 5-68. MR 29 #2627. MR 0165343 (29:2627)
  • [Lip 1] R. L. Lipsman, Uniformly bounded representations of $ SL(2,C)$, Amer. J. Math. 91 (1969), 47-66. MR 39 #355. MR 0238995 (39:355)
  • [Lip 2] -, Uniformly bounded representations of the Lorentz groups, Amer. J. Math. 91 (1969), 938-962. MR 42 #1946. MR 0267044 (42:1946)
  • [Lip 3] -, Harmonic analysis on $ SL(n,{\mathbf{C}})$, J. Functional Analysis 3 (1969), 126-155. MR 38 #5997. MR 0237716 (38:5997)
  • [Lip 4] -, An indicator diagram for locally compact unimodular groups, Duke Math. J. 36 (1969), 765-780. MR 41 #8592. MR 0263993 (41:8592)
  • [Mac] G. W. Mackey, Induced representations of locally compact groups. I, Ann. of Math. (2) 55 (1952), 101-139. MR 13, 434. MR 0044536 (13:434a)
  • [MZ] D. Montgomery and L. Zippin, Topological transformation groups, Interscience, New York, 1955. MR 17, 383. MR 0073104 (17:383b)
  • [Obe] D. M. Oberlin, $ {M_p}(G) \ne {M_q}(G),({p^{ - 1}} + {q^{ - 1}} = 1)$, Israel J. Math. 22 (1975), 175-179. MR 0387956 (52:8794)
  • [Pee] J. Peetre, A theory of interpolation of normed spaces, Notas de Matemática, no. 39, Instituto de Matemática Pura e Aplicada, Conselho Nacional de Pesquisas, Rio de Janeiro, 1968. MR 39 #4662. MR 0243340 (39:4662)
  • [Raj 1] M. Rajagopalan, $ {L^p}$-conjecture for locally compact groups. I, Trans. Amer. Math. Soc. 125 (1966), 216-222. MR 34 #1868. MR 0201991 (34:1868)
  • [Raj 2] -, $ {L^p}$-conjecture for locally compact groups. II, Math. Ann. 169 (1967), 331-339. MR 34 #8213. MR 0208403 (34:8213)
  • [Ric] N. W. Rickert, Convolution of $ {L^2}$-functions, Colloq. Math. 19 (1968), 301-303. MR 37 #4509. MR 0228930 (37:4509)
  • [Saw] S. A. Sawyer, Maximal inequalities of weak type, Ann. of Math. (2) 84 (1966), 157-174. MR 35 #763. MR 0209867 (35:763)
  • [Sta] J. D. Stafney, Analytic interpolation of certain multiplier spaces, Pacific J. Math. 22 (1970), 241-248. MR 0412715 (54:837)
  • [Ste 1] E. M. Stein, Interpolation of linear operators, Trans. Amer. Math. Soc. 83 (1956), 482-492. MR 18, 575. MR 0082586 (18:575d)
  • [Ste 2] -, On limits of sequences of operators, Ann. of Math. (2) 74 (1961), 140-170. MR 23 #A2695. MR 0125392 (23:A2695)
  • [Ste 3] -, Singular integrals and differentiability properties of functions, Princeton Math. Series, no. 30, Princeton Univ. Press, Princeton, N. J., 1970. MR 44 #7280. MR 0290095 (44:7280)
  • [SW 1] E. M. Stein and G. Weiss, An extension of a theorem of Marcinkiewicz and some of its applications, J. Math. Mech. 8 (1959), 263-284. MR 21 #5888. MR 0107163 (21:5888)
  • [SW 2] E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Math. Ser., no. 32, Princeton Univ. Press, Princeton, J. J., 1971. MR 46 #4102. MR 0304972 (46:4102)
  • [Wen] J. G. Wendel, Left centralisers and isomorphisms of group algebras, Pacific J. Math. 2 (1952), 251-261. MR 14, 246. MR 0049911 (14:246c)
  • [Zaf 1] M. Zafran, A multilinear interpolation theorem (to appear). MR 499959 (80h:46119)
  • [Zaf 2] -, Multiplier transformations of weak type, Ann. of Math. (2) 101 (1975), 34-44. MR 0370035 (51:6264)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 43A22

Retrieve articles in all journals with MSC: 43A22


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1976-0493164-6
Keywords: Locally compact group, convolution operator, strong type, weak type, noninclusion, real interpolation method, complex interpolation method, Rudin-Shapiro measures
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society