Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Deformations of formal embeddings of schemes


Author: Miriam P. Halperin
Journal: Trans. Amer. Math. Soc. 221 (1976), 303-321
MSC: Primary 14D15; Secondary 14E15
MathSciNet review: 0407016
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A family of isolated singularities of k-varieties will be here called equisingular if it can be simultaneously resolved to a family of hypersurfaces embedded in nonsingular spaces which induce only locally trivial deformations of pairs of schemes over local artin k-algebras. The functor of locally trivial deformations of the formal embedding of an exceptional set has a versal object in the sense of Schlessinger. When the exceptional set $ {X_0}$ is a collection of nonsingular curves meeting normally in a nonsingular surface X, the moduli correspond to Laufer's moduli of thick curves. When X is a nonsingular scheme of finite type over an algebraically closed field k and $ {X_0}$ is a reduced closed subscheme of X, every deformation of $ (X,{X_0})$ to $ k[\varepsilon ]$ such that the deformation of $ {X_0}$ is locally trivial, is in fact a locally trivial deformation of pairs.


References [Enhancements On Off] (What's this?)

  • [EGA] A. Grothendieck and J. Dieudonné, Éléments de géométrie algébrique, Inst. Hautes Études Sci. Publ. Math. Nos. 4, 6, 8, 20 (1960-1961). MR 30 #3885; 36 #177a,b.
  • [GAGA] Jean-Pierre Serre, Géométrie algébrique et géométrie analytique, Ann. Inst. Fourier, Grenoble 6 (1955–1956), 1–42 (French). MR 0082175
  • [SGA] A. Grothendieck, Séminaire de géométrie algébrique, Inst. Hautes Études Sci. 1 (1960-1961), Exposés I à V.
  • [1] M. Artin, Algebraization of formal moduli. II. Existence of modifications, Ann. of Math. (2) 91 (1970), 88–135. MR 0260747
  • [2] M. Artin, The implicit function theorem in algebraic geometry, Algebraic Geometry (Internat. Colloq., Tata Inst. Fund. Res., Bombay, 1968), Oxford Univ. Press, London, 1969, pp. 13–34. MR 0262237
  • [3] Egbert Brieskorn, Rationale Singularitäten komplexer Flächen, Invent. Math. 4 (1967/1968), 336–358 (German). MR 0222084
  • [4] Hans Grauert, Über Modifikationen und exzeptionelle analytische Mengen, Math. Ann. 146 (1962), 331–368 (German). MR 0137127
  • [5] Robin Hartshorne, Ample vector bundles, Inst. Hautes Études Sci. Publ. Math. 29 (1966), 63–94. MR 0193092
  • [6] Heisuke Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. of Math. (2) 79 (1964), 109–203; ibid. (2) 79 (1964), 205–326. MR 0199184
  • [7] Henry B. Laufer, Deformations of resolutions of two-dimensional singularities, Rice Univ. Studies 59 (1973), no. 1, 53–96. Complex analysis, 1972, Vol. I: Geometry of singularities (Proc. Conf., Rice Univ., Houston, Tex., 1972). MR 0367277
  • [8] David Mumford, The topology of normal singularities of an algebraic surface and a criterion for simplicity, Inst. Hautes Études Sci. Publ. Math. 9 (1961), 5–22. MR 0153682
  • [9] D. S. Rim, Formal deformation theory, SGA 7, Exposé VI, Lecture Notes in Math., vol. 288, Springer-Verlag, Berlin and New York, 1972.
  • [10] Michael Schlessinger, Functors of Artin rings, Trans. Amer. Math. Soc. 130 (1968), 208–222. MR 0217093, 10.1090/S0002-9947-1968-0217093-3
  • [11] G. N. Tjurina, The rigidity of rationally contractible curves on a surface, Izv. Akad. Nauk SSSR Ser. Mat. 32 (1968), 943–970 (Russian). MR 0246880
  • [12] Philip Wagreich, Elliptic singularities of surfaces, Amer. J. Math. 92 (1970), 419–454. MR 0291170
  • [13] Philip Wagreich, Singularities of complex surfaces with solvable local fundamental group, Topology 11 (1971), 51–72. MR 0285536

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 14D15, 14E15

Retrieve articles in all journals with MSC: 14D15, 14E15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1976-0407016-0
Keywords: Equisingular deformation, deformation of a pair, formal moduli, formally embedded exceptional set, locally complete intersection
Article copyright: © Copyright 1976 American Mathematical Society