Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Weak bases and metrization


Author: Harold W. Martin
Journal: Trans. Amer. Math. Soc. 222 (1976), 337-344
MSC: Primary 54E35
DOI: https://doi.org/10.1090/S0002-9947-1976-0423311-3
MathSciNet review: 0423311
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Several weak base (in the sense of A. V. Arhangel'skiĭ) metrization theorems are established, including a weak base generalization of the Nagata-Smirnov Metrization Theorem.


References [Enhancements On Off] (What's this?)

  • [1] A. V. Archangel'skii, On the metrization of topological spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 8 (1960), 589-595. (Russian) MR 23 #A2861. MR 0125561 (23:A2861)
  • [2] -, New criteria for paracompactness and metrisability of an arbitrary $ {T_1}$-space, Dokl. Akad. Nauk SSSR 141 (1961), 13-15 = Soviet Math. Dokl. 2 (1961), 1367-1369. MR 24 #A1113. MR 0131261 (24:A1113)
  • [3] -, Bicompact sets and the topology of spaces, Dokl. Akad. Nauk SSSR 150 (1963), 9-12 = Soviet Math. Dokl. 4 (1963), 561-564. MR 27 #720; 28 p. 1246. MR 0150733 (27:720)
  • [4] -, Mappings and spaces, Uspehi Mat. Nauk 21 (1966), no. 4 (130), 133-184 = Russian Math. Surveys 21 (1966), no. 4, 115-162. MR 37 #3534. MR 0227950 (37:3534)
  • [5] D. Burke, R. Engelking and D. Lutzer, Hereditarily closure-preserving collections and metrization, Proc. Amer. Math. Soc. 51 (1975), 483-488. MR 0370519 (51:6746)
  • [6] A. H. Frink, Distance functions and the metrization problem, Bull. Amer. Math. Soc. 43 (1937), 133-142. MR 1563501
  • [7] P. W. Harley, Metric and symmetric spaces, Proc. Amer. Math. Soc. 43 (1974), 428-430. MR 0336713 (49:1486)
  • [8] P. W. Harley and G. D. Faulkner, Metrization of symmetric spaces (to appear).
  • [9] R. E. Hodel, Metrizability of topological spaces (to appear). MR 0370520 (51:6747)
  • [10] T. Hoshina, On the quotient s-images of metric spaces, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 10 (1970), 265-268. MR 43 #1115. MR 0275358 (43:1115)
  • [11] F. B. Jones, Metrization, Amer. Math. Monthly 73 (1966), 571-576. MR 33 #7980. MR 0199840 (33:7980)
  • [12] H. W. Martin, Metrization of symmetric spaces and regular maps, Proc. Amer. Math. Soc. 35 (1972), 269-274. MR 46 #2648. MR 0303511 (46:2648)
  • [13] -, Perfect maps of symmetrizable spaces, Proc. Amer. Math. Soc. 38 (1973), 410-412. MR 47 #2561. MR 0314009 (47:2561)
  • [14] -, A note on the Frink metrization theorem, Rocky Mountain J. Math. 6 (1976), 155-157. MR 0391035 (52:11857)
  • [15] K. Morita, A condition for the metrizability of topological spaces and for n-dimensionality, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 5 (1955), 33-36. MR 17, 179. MR 0071754 (17:179f)
  • [16] J. Nagata, A contribution to the theory of metrization, J. Inst. Polytech. Osaka City Univ. Ser. A 8 (1957), 185-192. MR 20 #4256. MR 0097789 (20:4256)
  • [17] -, Modern general topology, Bibliotheca Mathematica, vol. 7, North-Holland, Amsterdam; Wolters-Noordhoff, Groningen, 1968. MR 41 #9171.
  • [18] T. Shiraki, On some metrization theorems (to appear). MR 0156318 (27:6242)
  • [19] F. G. Slaughter, Jr., Theorems on submetrizability (unpublished).
  • [20] A. H. Stone, Paracompactness and product spaces, Bull. Amer. Math. Soc. 54 (1948),977-982. MR 10, 204. MR 0026802 (10:204c)
  • [21] -, Sequences of coverings, Pacific J. Math. 10 (1960), 689-691. MR 22 #9955. MR 0119189 (22:9955)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 54E35

Retrieve articles in all journals with MSC: 54E35


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1976-0423311-3
Keywords: Metrizable space, symmetrizable space, weak base, strongly uniform weak base, regular weak base, weak development
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society