Centralisers of diffeomorphisms
Author:
Boyd Anderson
Journal:
Trans. Amer. Math. Soc. 222 (1976), 97106
MSC:
Primary 58F99; Secondary 57D50
MathSciNet review:
0423424
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: It is shown that if F is a hyperbolic contraction of , coordinates may be chosen so that not only is F a polynomial mapping, but so is any diffeomorphism which commutes with F. This implies an identity principle for diffeomorphisms and commuting with an arbitrary MorseSmale diffeomorphism F of a compact manifold M: if , then on an open subset of on M. Finally it is shown that under a certain linearisability condition at the saddles of F, is in fact a Lie group in its induced topology.
 [1]
George
D. Birkhoff, Dynamical systems, With an addendum by Jurgen
Moser. American Mathematical Society Colloquium Publications, Vol. IX,
American Mathematical Society, Providence, R.I., 1966. MR 0209095
(35 #1)
 [2]
KuoTsai
Chen, Local diffeomorphisms—𝐶^{∞} realization
of formal properities, Amer. J. Math. 87 (1965),
140–157. MR 0173271
(30 #3484)
 [3]
Nancy
Kopell, Commuting diffeomorphisms, Global Analysis (Proc.
Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), Amer. Math. Soc.,
Providence, R.I., 1970, pp. 165–184. MR 0270396
(42 #5285)
 [4]
H. I. Levine, Singularities of differentiable mappings, Proc. Liverpool Singularities Sympos., I, Lecture Notes in Math., vol. 192, SpringerVerlag, Berlin and New York, 1971, p. 6.
 [5]
John
N. Mather, Stability of 𝐶^{∞} mappings. II.
Infinitesimal stability implies stability, Ann. of Math. (2)
89 (1969), 254–291. MR 0259953
(41 #4582)
 [6]
J.
Palis and S.
Smale, Structural stability theorems, Global Analysis (Proc.
Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), Amer. Math. Soc.,
Providence, R.I., 1970, pp. 223–231. MR 0267603
(42 #2505)
 [7]
Shlomo
Sternberg, Local contractions and a theorem of
Poincaré, Amer. J. Math. 79 (1957),
809–824. MR 0096853
(20 #3335)
 [8]
Shlomo
Sternberg, On the structure of local homeomorphisms of euclidean
𝑛space. II., Amer. J. Math. 80 (1958),
623–631. MR 0096854
(20 #3336)
 [1]
 G. D. Birkhoff, Dynamical systems, rev. ed., Amer. Math. Soc. Colloq. Publ., vol. 9, Amer. Math. Soc., Providence, R. I., 1966, p. 62. MR 0209095 (35:1)
 [2]
 K.T. Chen, Local diffeomorphisms realization of formal properties, Amer. J. Math. 87 (1965), 140157. MR 30 #3484. MR 0173271 (30:3484)
 [3]
 N. Kopell, Commuting diffeomorphisms, Proc. Sympos. Pure Math., vol. 14, Amer. Math. Soc., Providence, R. I., 1970, pp. 165184. MR 42 #5285. MR 0270396 (42:5285)
 [4]
 H. I. Levine, Singularities of differentiable mappings, Proc. Liverpool Singularities Sympos., I, Lecture Notes in Math., vol. 192, SpringerVerlag, Berlin and New York, 1971, p. 6.
 [5]
 J. N. Mather, Stability of mappings. II: Infinitesimal stability implies stability, Ann. of Math. (2) 89 (1969), 254291. MR 41 #4582. MR 0259953 (41:4582)
 [6]
 J. Palis and S. Smale, Structural stability theorems, Proc. Sympos. Pure Math., vol. 14, Amer. Math. Soc., Providence, R. I., 1970, pp. 223231. MR 42 #2505. MR 0267603 (42:2505)
 [7]
 S. Sternberg, Local contractions and a theorem of Poincaré, Amer. J. Math. 79 (1957), 809824. MR 20 #3335. MR 0096853 (20:3335)
 [8]
 , On the structure of local homeomorphisms of Euclidean nspace. II, Amer. J. Math. 80 (1958), 623631. MR 20 #3336. MR 0096854 (20:3336)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
58F99,
57D50
Retrieve articles in all journals
with MSC:
58F99,
57D50
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029947197604234246
PII:
S 00029947(1976)04234246
Article copyright:
© Copyright 1976
American Mathematical Society
