CENTRALISERS OF C^∞ DIFFEOMORPHISMS

BY

BOYD ANDERSON

ABSTRACT. It is shown that if F is a hyperbolic contraction of \mathbb{R}^n, coordinates may be chosen so that not only is F a polynomial mapping, but so is any diffeomorphism which commutes with F. This implies an identity principle for diffeomorphisms G_1 and G_2 commuting with an arbitrary Morse-Smale diffeomorphism F of a compact manifold M: if $G_1, G_2 \in Z(F)$, then $G_1 = G_2$ on an open subset of M implies $G_1 = G_2$ on M.

Finally it is shown that under a certain linearisability condition at the saddles of F, $Z(F)$ is in fact a Lie group in its induced topology.

Introduction. Let f be a C^∞ diffeomorphism of \mathbb{R}^n onto itself which fixes the origin, and let $Df_0: \mathbb{R}^n \to \mathbb{R}^n$ be its first derivative at 0. We shall describe f as a sink on \mathbb{R}^n if it is hyperbolic and a topological contraction: i.e., (i) every eigenvalue λ of Df_0 satisfies $|\lambda| < 1$ and (ii) $\cap_{n=0}^\infty U^n(0) = \{0\}$ for any bounded set U containing the origin. The k-jet of f, denoted f_k, is an element of $L^k(\mathbb{R}^n)$, the group of k-jets of local diffeomorphisms of \mathbb{R}^n which preserve the origin. We denote by $L^\omega(\mathbb{R}^n)$ the group of formal power series; $L^\omega(\mathbb{R}^n) = \lim\limits_{k \to \infty} L^k(\mathbb{R}^n)$.

The theorem of K.-T. Chen and S. Sternberg [2], [7] applied to sinks, implies that there is k (computed from the eigenvalues of Df_0) such that the germ of f is conjugate by a C^∞ diffeomorphism germ g, to some L^k-conjugate of f_k, $g f g^{-1} = f_k$.

We describe the normal form f_k in §2. Two sinks f and h are conjugate if and only if f_k and h_k are conjugate in $L^\omega(\mathbb{R}^n)$.

It is our purpose to show that the space of diffeomorphisms commuting with f admits a finite dimensional parametrisation. The first main result is

THEOREM 1. Let h be any local diffeomorphism of \mathbb{R}^n such that $f_k h = h f_k$. Then $h = h_k$.

An obvious corollary is that conjugating functions g in equation (I) are unique up to elements of the centraliser in $L^k(\mathbb{R}^n)$ of f_k.

The theorem is a generalisation of a corresponding theorem of N. Kopell [3] in which $\bar{f}_k = \bar{f}_1$, i.e., f is linearisable. Thus by an argument in her paper,
there follows an identity principle for a sink, or for that matter, for a \(C^\infty \)
Morse-Smale diffeomorphism of a compact \(C^\infty \)-manifold \(M \) without boundary.
(For definitions, see [6].)

Corollary 1. If \(g_1 \) and \(g_2 \) both commute with \(f \), and if \(U \) is an open
set of \(R^n(M) \), then \(g_1 = g_2 \) on \(U \) implies \(g_1 \equiv g_2 \).

A second corollary may be adduced which describes the space of solutions
to the equation \([X, Y] = 0\), where \(X \) and \(Y \) are \(C^\infty \) vector fields on \(R^n \), and
the flow \(\phi_t \) generated by \(Y \) consists of hyperbolic sinks.

Corollary 2. Let \(Y \) be a vector field germ such that \(Y \) is an elementary
contracting critical point: i.e., the eigenvalues \(\mu \) of \(DZ_0 \) satisfy \(\text{Re}(\mu) < 0 \). Let
\(\mathfrak{g}(Y) = \{ X \mid [X, Y] = 0 \} \). Then \(\mathfrak{g}(Y) \) is the Lie algebra of \(Z(\phi_1) \) the centraliser
in \(L^k(n) \) of \(\phi_1 \) (\(k \) chosen as above).

In order to prove the theorem, we give in §2 a normal form \(\tilde{f}_k \) for \(f \); it
is related to the real Jordan form which the matrix \(f_k \) has in a certain faithful
linear representation of \(L^k(n) \). The jet \(\tilde{f}_k \) is an invariant of \(C^\infty \)-conjugacy of
sinks. Indeed, using the representation one can give an alternative proof of the
formal content of Sternberg's theorem.

The second main result is an extension of Theorem 1 to Morse-Smale dif-
feomorphisms. To a Morse-Smale diffeomorphism \(f \), and to an orbit \(\{ x, f(x),
\ldots, f^m(x) \} \) in \(\Omega(f) \), there is associated the spectrum of \(D(f^m)_x \). At least
one such orbit is a sink, for which all the eigenvalues of \(D(f^m)_x \) have absolute
value less than 1. A source for \(f \) is a sink for \(f^{-1} \) and any other point of
\(\Omega(f) \) is called a saddle.

Now let Diff\(^{\infty}\)(\(M \)) denote the topological group of \(C^\infty \) diffeomorphisms
of a compact manifold \(M \), topologised by the \(C^\infty \) topology (see, for example
[5]). Diff\(^{\infty}\)(\(M \)) contains \(Z(f) = \{ g \in \text{Diff}^{\infty}(M) \mid gf = fg \} \) as a closed subgroup.

Theorem 2. Suppose \(f \) is a Morse-Smale diffeomorphism such that at
each saddle \(y \),

\[
\lambda_i \neq \prod_{j=1}^{n} \lambda_j^{m_j},
\]

where if \(m \) is the period of \(f \) on \(y \), \(\lambda_q \) are the eigenvalues of \(D(f^m)_y \), \(m_i \) are
nonnegative integers, and there is \(j \neq i \) with \(m_j \neq 0 \). Then as a topological
group \(Z(f) \) is equivalent to a Lie group.

In a subsequent paper we prove that generically \(Z(f) \) is in fact discrete;
such \(f \) cannot, for example, be a time-one map for a \(C^\infty \) vector field.

This paper was developed from part of my Ph.D. thesis at the University
of California at Berkeley; I would like to particularly thank my supervisor
M. Hirsch for his encouragement and help.
1. Preliminaries. We shall adopt some notations of [4], which we briefly recall. $C^\infty(R^n)$ denotes the local ring of C^∞ mapping germs at the origin and M its maximal ideal. Analogously, let N be the ideal in $R[x_1, \ldots, x_n]$ of polynomials without constant term. N is generated as a real vector space by the monomials—we denote the monomial $x_1^{i_1} \cdots x_n^{i_n}$ by x^I, where $I = (i_1, \ldots, i_n)$ is an ordered n-tuple of nonnegative integers. For such I, $I! = i_1! \cdots i_n!$ and $\deg I = i_1 + \cdots + i_n$. We shall need the fact that there is a canonical identification of N with $\bigoplus_{i=1}^\infty O^iV$ (where O^iV denotes the ith symmetric power of $V \cong R^n$) under which monomials in x are identified with monomials in the standard basis of V.

The Taylor homomorphism $j_k: M \to W$ is defined by

$$j_k(f) = \sum_{I} \frac{\partial^{\deg f}}{\partial x^I}(0)x^I,$$

the sum being over all I with $1 \leq \deg I \leq k$. As is well known, j_k induces an isomorphism $M/M^{k+1} \cong N/N^{k+1}$, this quotient being denoted $J^k(n, 1)$, the ring of k-jets of vanishing real C^∞ functions. Having introduced N, we may speak of “complex k-jets”: these are elements of N/N^{k+1} when N is the ideal of complex polynomials in n-variables without constant term. $J^k(n, n) = J^k(n, 1) \otimes R^n$ is the space of k-jets of functions R^n to R^n and $L^k(n) \subset J^k(n, n)$ the group of jets invertible for the operation of composition.

There is a right linear action of $L^k(n)$ on $J^k(n, 1)$ defined by $x^I \cdot g = j_k(\phi^I)$ where $g = (g_1, \ldots, g_n)$ is in $L^k(n)$. In the basis of monomials, g has the matrix $G_{IJ} = \text{coefficient of } g^I \text{ on } x^J$. Hence by sending g to the adjoint of the linear map G_{IJ}, there is obtained a representation $\rho_k: L^k(n) \to GL(J^k(n, 1))$. The matrix of $\rho_k(g)$, in the basis of monomials, is $G_{IJ} = \text{coefficient of } g^I \text{ on } x^J$. The indices I, J range over all monomials in n variables of degree not greater than k.

The following facts are easy to see.

(i) ρ_k is faithful (and presents $L^k(n)$ as an algebraic group).

(ii) If $\deg I = 1 = \deg J$, $(\rho_k(g))_{IJ}$ is the Jacobian matrix of g. $\rho_k(g) = Dg$. Moreover, if $1 < r < k$ and $\deg I = r = \deg J$, $(\rho_k(g))_{IJ}$ is the matrix of $Dg \circ \cdots \circ Dg: O^rV \to O^rV$ (in the basis of monomials). This implies that the eigenvalues of $\rho_k(g)$ are all monomials λ^I of degree $\leq k$ in the eigenvalues $\{\lambda_1, \ldots, \lambda_n\}$ of Dg.

(iii) If f is a diffeomorphism of R^n, and if $\deg I = 1, \deg J = r < k$, then $\rho_k(f^I)_{IJ}$ is the matrix of $Df^I: O^rV \to V$ taken in the basis $\{|I|x^I|\deg J = r\}$.

2. Normal forms of diffeomorphisms. 1-jets. Let A be a real linear operator. Then there is a basis $\{z_1, z_1', \ldots, z_r, z_r', w_{2r+1}, \ldots, w_n\}$ of C^n in which
the matrix of A is in Jordan form: if z_i is a (generalised) eigenvector for λ, so is \overline{z}_i for $\overline{\lambda}$, and w_r are the real eigenvectors. By the real Jordan form of A, we mean the matrix which A takes in the basis $\{\text{Re}(z_1), \text{Im}(z_1), \ldots, \text{Im}(z_r), w_{2r+1}, \ldots, w_n\}$.

Example.

$$
\begin{pmatrix}
\text{Re}\lambda & \text{Im}\lambda & 1 & 0 \\
-\text{Im}\lambda & \text{Re}\lambda & 0 & 1 \\
0 & 0 & \text{Re}\lambda & \text{Im}\lambda \\
0 & 0 & -\text{Im}\lambda & \text{Re}\lambda \\
\end{pmatrix}
\sim
\begin{pmatrix}
\lambda & 0 & 1 & 0 \\
0 & \overline{\lambda} & 0 & 1 \\
0 & 0 & \lambda & 0 \\
0 & 0 & 0 & \overline{\lambda} \\
\end{pmatrix}.
$$

Notice that there is an involution $z_i \leftrightarrow \overline{z}_i$ of the basis of \mathbb{C}^n which induces a corresponding involution σ of the monomials, which we denote by $z^I \leftrightarrow z^{\sigma(I)}$. If $z^I = z_1^{i_1}z_2^{i_2}\ldots z_r^{i_r}w$, $z^{\sigma(I)} = z_1^{j_1}z_2^{j_2}\ldots z_r^{j_r}w$.

Complex jets. A complex k-jet or formal power series (∞-jet) F is in normal form providing:

(i) $\rho_1(F_1) = \text{Jordan normal form}$,
(ii) $\rho_r(F_r)$ is upper triangular for $k \geq r \geq 1$,
(iii) $(\rho_r(F_r))_{IJ} \neq 0 \Rightarrow \lambda^I = \lambda^J$.

Real jets. A real k-jet or formal power series F is in normal form providing:

(i) $\rho_1(F_1)$ is in real Jordan normal form, so there is a matrix A_1, being a sum of blocks ($\begin{pmatrix}1 & 1 \\ 0 & 0\end{pmatrix}$) so that $A_1 \rho_1(F_1)A_1^{-1} = \text{Jordan form of } \rho_1(F_1)$.
(ii) The complex power series $A_1 F_r A_1^{-1}$ is in normal form for each $k \geq r \geq 1$.

It follows from (ii) that $(A_k)_{IJ} = (A_k)_{\sigma(I)\sigma(J)}$, and conversely, if this condition is satisfied for a complex formal power series or jet A_k, the eigenvalues of whose linear part occur in conjugate pairs, then A_k is derived from a real f.p.s. via conjugation by A_1 (see [1]).

A diffeomorphism germ is in normal form if its associated formal power series is in real normal form.

Remarks. (1) The normal form is a conjugacy invariant of formal power series or jets, or diffeomorphisms, but it need not be unique. For instance, if $\lambda \neq 1$ is real, the 3-jets

$$
F(x, y, z) = (\lambda x, \lambda^2 y + x^2, \lambda^3 z + xy + x^3),
$$

$$
G(x, y, z) = (\lambda x, \lambda^2 y + x^2, \lambda^3 z + xy)
$$

are distinct normal forms which are conjugate in $L^3(3)$, by $I + (0, x^2, 0)$.
The matrix \(\rho_k(F_{\infty}) \) will in general not be in Jordan form for \(k > 1 \). The following lemma is a generalisation of a lemma of Sternberg [7].

Lemma. For any (real) invertible FPS \(F_{\infty} \), there is a (real) invertible FPS \(G \) with \(GF_{\infty}G^{-1} \) in (real) normal form.

Proof. We construct \(G = \lim G_k \) by induction on \(k \). If \(k = 1 \), this is the familiar real Jordan normal form theorem for the Jacobian \(F_1 \). For the inductive step, we observe that if \(\rho_k(F_k) \) is in (real) normal form, so is \(\rho_{k+1}(F_k) \). (Any entry \(\langle f^I, x^J \rangle \) of \(\rho_{k+1}(F_k) \) satisfies \(\langle f^I, x^J \rangle = \sum \langle f^{I'_1}, x^{J'_1} \rangle \langle f^{I'_2}, x^{J'_2} \rangle \) where the sum is over all monomials \(f^{I'_1}f^{I'_2} = f^I \) and \(x^{J'_1}x^{J'_2} = x^J \). By inductive hypothesis, some summand can be nonzero only when \(\lambda^{I'_1} = \lambda^{J'_1} \) and \(\lambda^{I'_2} = \lambda^{J'_2} \), in which event \(\lambda^I = \lambda^J \). As before, \(\lambda^I \) denotes a monomial in the eigenvalues of \(F_1 \).

It follows that if \(G_k \) is chosen so that \(\rho_k(G_kF_kG_k^{-1}) \) is in (real) normal form, then \(\rho_{k+1}(G_kF_{k+1}G_k^{-1}) \) will be in (real) normal form except possibly for entries \(f_{iJ} \) with \(\deg i = 1 \), \(\deg J = k + 1 \). (These entries represent the contribution of \(D^kF : O^kV \rightarrow V \).) Dividing up

\[
J^{k+1}(n, 1) = \frac{M}{M^2} \oplus \sum_{1 < r < k+1} \frac{M^r}{M^{r+1}} \oplus \frac{M^{k+1}}{M^{k+2}}
\]

we see that \(\rho_{k+1}(F_{\infty}) \) has, in this decomposition, the form

\[
X = \begin{bmatrix} A & B & D \\ 0 & C & E \\ 0 & 0 & F \end{bmatrix},
\]

where

\[
\begin{pmatrix} A & B & 0 \\ 0 & C & E \\ 0 & 0 & F \end{pmatrix}
\]

is in normal form. \(A \) is the Jacobian and \(F \) is its symmetric power of degree \((k + 1) \). Conjugating \(X \) by a matrix

\[
Y = \begin{bmatrix} I & 0 & G \\ 0 & I & 0 \\ 0 & 0 & I \end{bmatrix}
\]

we obtain \(D - AG + GF \) in the top right-hand corner.

To prove the lemma is to solve \((D - AG + GF)_{iJ} = 0 \) when \(\lambda^I \neq \lambda^J \); i.e., \(D_{iJ} = \Sigma A_{ij}G_{JK} - \Sigma G_{iK}F_{KJ} \) with \(1 \leq j \leq n \) and \(\deg K = k + 1 \).
Using the assumption that $p_{k+1}(F_k)$ is upper triangular (as a complex matrix), this equation becomes

$D_{ij} = G_{ij}(A_{ii} - F_{jj}) + \sum_{i \neq j} A_{ij} G_{jj} - \sum_{k < J} G_{ik} F_{kJ}.$

(\ast)

Supposing G_{jj} is known for $j < i$, G_{ik} for $K < J$, we may solve inductively for G_{ij} when $A_{ii} \neq F_{jj}$ (i.e. $\lambda^i \neq \lambda^j$).

To prove the statement for real jets, we must know that the basis change taking F_1 into its real Jordan form takes some real jet into Y. According to Birkhoff [1], the condition that this be so is that $(y^I, x^J) = (\sigma(I), x^{\sigma(J)})$, where the involution σ on monomials is defined as above. It is clear in equation (\ast) that if D, A, F satisfy the condition, G will satisfy it by the same induction when $\lambda^I \neq \lambda^J$; and otherwise the choice of $G_{ij} = 0$ also satisfies the condition.

Remarks. (1) The lemma above constitutes the formal content of the theorem of Chen and Sternberg as in [2], [7] and [8], in the sense that by choosing a diffeomorphism with G_∞ as above, we may conjugate F by G to a diffeomorphism whose jet is in normal form. The analytic content is then to prove that two C^∞ hyperbolic diffeomorphisms with the same normal form are C^∞-conjugate.

(2) If $\lambda^I \neq \lambda^J$ for any monomial λ^I of degree > 1, the normal form is linear, whereupon F is C^∞ conjugate to a linear map.

(3) If F is a sink (source), there is k such that $\lambda^I = \lambda^J \Rightarrow \deg I \leq k$, so that the normal form of F is a k-jet, to which F is C^∞-conjugate.

3. Centralisers. The crucial observation of this section is that if $L: V \rightarrow V$ is a linear map, and if $V = \sum V_i$ is its decomposition into generalised eigenspaces, then if $LM = ML$, each V_i is M-invariant. Applying this fact to $p_k(F_k)$ in normal form, if G_k is a commuting jet, then $p_k(G_k)$ also has the property $p_k(G_k)_{ii} \neq 0 \Rightarrow \lambda^I = \lambda^J$; although of course it need not be upper triangular. Furthermore, if F_k is a contraction and k is not less than the maximal degree on the right-hand side of relations $\lambda^I = \lambda^J$, then if G_∞ commutes, $G_\infty = G_k = G_{k+r}$ for all r. In particular, F^{-1}_k (or G^{-1}_k) coincides with the inverse of F_k in $L^\infty(n)$, and so the polynomial mappings $F_k, F^{-1}_k, G_k, G^{-1}_k$ are globally defined diffeomorphisms of \mathbb{R}^n.

The theorem is an application of the following

Lemma. Let F_k be a contracting jet in normal form with k as above. Considered as a polynomial diffeomorphism of \mathbb{R}^n, for x, y in a compact $K \subset \mathbb{R}^n$, we have

\begin{align*}
(1) & \quad |F^{-m}_k(x) - F^{-m}_k(y)| \leq p(m) \lambda^k m |x - y|, \\
(2) & \quad |F^m_k(x) - F^m_k(y)| \leq q(m) \lambda^k m |x - y|,
\end{align*}
where p, q are polynomials; $\lambda^{-1} =$ smallest eigenvalue of F_1, $\mu =$ largest eigenvalue of F_1.

Proof. We prove (1). Let $\alpha: V \to S^k V$ be defined by $x \mapsto x^I$; i.e., if
\{e_j\} is a basis of V and the symmetric products of these vectors are denoted e^I, then the coefficient of $\alpha(x)$ on e^I is x^I. Clearly α has a uniform Lipschitz constant on K.

If π is the projection $S^k V \to V$, then $F_k^m(x) = \pi \circ \rho(F_k)^m \circ \alpha(x)$ for any $m \in Z$, because F_k is in normal form. Hence

$$|\pi \circ \rho(F_k)^m \circ \alpha(x) - \pi \circ \rho(F_k)^m \circ \alpha(y)| \leq |\pi| |\rho(F_k)^m| |\alpha(x) - \alpha(y)|$$

$$\leq \text{const} |\rho(F_k)^m| |x - y|.$$

We may write $\rho(F_k) = SU$ where these two linear maps commute, S is semisimple—we may suppose diagonal—and U is unipotent. Then $\rho(F_k)^{-m} = S^{-m} U^{-m}$ and

$$|\rho(F_k)^{-m}| \leq |S^{-m}| |U^{-m}| \leq \lambda^m p(m).$$

Remark. $(\deg p) + 1 =$ nilpotence degree of $(U - I)$.

Proof of Theorem 1. According to the observation at the head of this section, with k as above, if g commutes with F_k, then for all $r \leq \infty$, $\rho_{k+r}(g) = \rho_k(g)$. Let g_k be the polynomial diffeomorphism of degree k such that $\rho_k(g_k) = \rho_k(g)$. Then $g_k F_k = F_k g_k$, so that we may write $g g_k^{-1} = I + h$, commuting with F_k, and such that $h(x) = O(x^r)$ on a small enough neighbourhood U_r of 0 (for any r). In fact, $h \equiv 0$. Since $h(x) = (I + h - I)(x)$, we have

$$|h(x)| \leq |F_k^{-m}(I + h) F_k^{-m} - F_k^{-m} F_k^{-m}(x)| \leq p(m) \lambda^m k |(I + h) F_k^{-m} - F_k^{-m}(x)|$$

$$\leq p(m) \lambda^m |h(F_k^{-m}(x))| \leq p(m) \lambda^m |F_k^{-m}(x)|^r$$

$$\leq \text{const} p(m) \lambda^m q(m) \mu^m r |x|^r.$$

Choosing r and U_r such that $\lambda \mu^r < 1$, and taking the limit of the right-hand side as $m \to \infty$, we see $h(x) \equiv 0$, because the exponential convergence of $(\lambda \mu^r)^m$ dominates the polynomial convergence of $p(m) q(m) \mu^m r |x|^r$.

4. Centralisers of Morse-Smale diffeomorphisms. In this section we prove Theorem 2, stated in the Introduction. If p is the number of points in $\Omega(f)$, since $Z(f)$ acts on $\Omega(f)$, there is a homomorphism from $Z(f)$ to S_p whose kernel contains the identity component $Z(F)_0$: we show $Z(F)_0$ is a Lie group. Moreover, we may suppose $\Omega(f)$ consists of fixed points because $Z(f) \subset Z(f^r)$ for any r.

If $\{S_j\}$ are the sources in $\Omega(f)$ and $\{N_j\}$ the sinks, we may choose coordinates for their unstable and stable manifolds, $w^u(S_j)$ and $w^s(N_j)$, so that f is in normal form, and there are Lie groups $G_i = Z(f|w^u(S_j))$, $G_j = Z(f|w^s(N_j))$. Then
if $g \in Z(f)$ acts trivially on $\Omega(f)$, g leaves invariant the $w^u(S_j)$ and $w^s(N_j)$, and so $g|_{w^u(S_j)} \in G_i$, $g|_{w^s(N_j)} \in G_j$. Hence there is defined a homomorphism $R: Z(f)_0 \to \Pi_{i,j} G_i \times G_j$.

By the identity principle this is injective, and it is continuous for the C^∞ topology on $Z(f)_0$. The conclusion will follow from the fact that R is a closed map. In other words, if g_m are C^∞ diffeomorphisms in $Z(f)_0$, such that $g_m \to g$ C^∞-uniformly on compacta in $\bigcup w^u(S_j) \cup w^s(N_j) = M \sim \{saddles\}$, then the convergence is in fact uniform on M; in particular, g is C^∞ and hence in the image of R.

We restrict attention to a saddle, about which, by assumption (see [8]), coordinates may be chosen making f linear. In this coordinate system, there are unique f-invariant linear subspaces E^u and E^s which span R^n; the expanding and contracting eigenspaces of the (now linear) map f. The diffeomorphisms g_m, hence the map g, leave these subspaces invariant, whereupon from Theorem 1, $g_m|_{E^u}$ and $g_m|_{E^s}$ are already uniformly convergent on compacta in $E^u \cup E^s$; it follows that $g|_{E^u \cup E^s}$ is C^∞.

Since f is linear, $f = f^u \times f^s: E^u \times E^s \to E^u \times E^s$. This means f commutes with each $g_m^u \times g_m^s$, and therefore with $g_m^u \circ (g_m^u \times g_m^s)^{-1}$. This sequence is the identity along $E^u \cup E^s$, and converges uniformly on all compacta to g if and only if $g_m \to g$ uniformly on all compacta. Hence, we may make the simplifying assumption that $g_m = g = I$ on $E^u \cup E^s$.

The first step is to show uniform C^0-convergence. Let $g_m = S_m + U_m$ be the coordinate expansion of g_m; thus, $S_m(U_m): R^n \to E^u(E^u)$. Then $f^{-r}U_m f^r = U_m$ and $f^t S_m f^{-t} = S_m$ for every $r, t \in \mathbb{Z}$ and every m, by the linear and hyperbolic properties of f. Consequently, in any norm

$$|g_m(x) - g(x)| \leq |f^{-r}(U_m f^r(x) - U f^r(x))| + |f^t(S_m f^{-t}(x) - S f^{-t}(x))|.$$

If $W \subset R^n - \{0\}$ is a compact set containing fundamental regions for f^u and f^s, then by uniform convergence on W, for high m, $|U_m - U| + |S_m - S| < \epsilon$ on W. But for x in any compact neighborhood of zero, there are numbers r, t so that $f^r(x)$ and $f^{-t}(x)$ are in W. The result follows from the fact that f^{-r} acts contractively on E^u and f^s contractively on E^s.

The argument for convergence of the higher derivatives is more delicate: we observe that $D^k f = 0$ for $k > 2$ (f is linear). Then by applying the chain rule ($f = Df$ is a constant linear map)

$$\tag{**}(Df)^r (D^k g_m(x) (Df \times \ldots \times Df)^{-r} = D^k g_m(f^r x)$$

for all k, r, m, x. This equation is in fact the rth iteration of the linear operator $F(A) = Df \circ A \circ (Df \times \ldots \times Df)^{-1}$ operating on I^k_{sym} the space of symmetric...
If $L^k_{sym} = L^u \oplus L^s \oplus L^c$ is the decomposition into eigenspaces for F for the eigenvalues of absolute value > 1, < 1, and $= 1$ respectively, then the argument used in the C^0 case above may be applied to show that the L^u and L^s components of $D^k g_m - D^k G$ tend to zero as $x \to 0$. It remains to settle the component on L^c. Note that for $F|_{L^c}$, with a norm on L^k_{sym}, $|F^r| \leq p(r)$ for some polynomial p.

We claim that G_m has infinite contact with the identity along $E^u \cup E^s$. If $x \in E^s$, we see that $F^r(D^k g_m^c(x)) \to D^k g_m^c(0)$ as $r \to \infty$. For a linear map, this can only happen for a fixed point, and so $D^k g_m^c$ is constant along E^s (similarly, E^u, using F^{-1}). In fact, for every $k > 1$, $D^k g_m^c(0) = 0$, since, any jet J_k commuting with the linear map $f = Df_0$, satisfies $J_k = J_1$ by the assumption $\lambda_i \neq \prod \lambda_j^m$. But $g_m = I$ along E^u and E^s (by the simplifying assumption above), and this implies that $J_1 = I$: this proves the claim.

We can now show that (g_m) is uniformly convergent on compacta. By (**), for the L^c component, we have

$$|D^k g_m(x) - D^k g(x)| = |F^{-r}(D^k g_m(f^r(x))) - F^{-r}(D^k g(f^r(x)))|$$

$$\leq p(r)|D^k g_m(f^r(x)) - D^k g(f^r(x))|$$

$$\leq p(r)(|D^k (g_m - g)(f^r(x)) - D^k (g_m - g)(z)| + |D^k (g_m - g)(z)|).$$

For any x in a small compact neighborhood of 0, there is r such that $f^r(x) \in W$, then $z \in E^u$ may be chosen to minimise the distance between $f^r(x)$ and E^u. By the preceding, $D^k (g_m - g)(z) = 0$. Now applying the Mean Value Theorem, where $|A|_W$ denotes supremum on W,

$$|D^k (g_m - g)(f^r(x)) - D^k (g_m - g)(z)| \leq |D^{k+1} (g_m - g)|_W |f^r(x) - z| \text{ const } \lambda^r$$

for some $0 < \lambda < 1$.

Since exponential convergence still dominates polynomial convergence, this completes the proof. g_m is for each k, C^k-uniformly convergent on compacta, R is a closed map, and g is a C^∞ diffeomorphism.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER, BRITISH COLUMBIA, CANADA

Current address: Mathematical Institute, University of Warwick, Coventry, England