Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The Mackey problem for the compact-open topology


Author: Robert F. Wheeler
Journal: Trans. Amer. Math. Soc. 222 (1976), 255-265
MSC: Primary 46E10
DOI: https://doi.org/10.1090/S0002-9947-1976-0425593-0
MathSciNet review: 0425593
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ {C_c}(T)$ denote the space of continuous real-valued functions on a completely regular Hausdorff space T, endowed with the compact-open topology. Well-known results of Nachbin, Shirota, and Warner characterize those T for which $ {C_c}(T)$ is bornological, barrelled, and infrabarrelled. In this paper the question of when $ {C_c}(T)$ is a Mackey space is examined. A convex strong Mackey property (CSMP), intermediate between infrabarrelled and Mackey, is introduced, and for several classes of spaces (including first countable and scattered spaces), a necessary and sufficient condition on T for $ {C_c}(T)$ to have CSMP is obtained.


References [Enhancements On Off] (What's this?)

  • [1] A. G. A. Babiker, On almost discrete spaces, Mathematika 18 (1971), 163-167. MR 45 # 5299. MR 0296238 (45:5299)
  • [2] P. Bacon, The compactness of countably compact spaces, Pacific J. Math. 32 (1970), 587-592. MR 41 # 2624. MR 0257975 (41:2624)
  • [3] H. Buchwalter, Fonctions continues et mesures sur un espace complètement régulier, Lecture Notes in Math., vol. 331, Springer-Verlag, Berlin and New York, 1973, pp. 183-202. MR 0482104 (58:2191)
  • [4] R. C. Buck, Bounded continuous functions on a locally compact space, Michigan Math. J. 5 (1958), 95-104. MR 21 # 4350. MR 0105611 (21:4350)
  • [5] J. B. Conway, The strict topology and compactness in the space of measures. II, Trans. Amer. Math. Soc. 126 (1967), 474-486. MR 34 # 6503. MR 0206685 (34:6503)
  • [6] M. DeWilde and J. Schmets, Caractérisation des espaces $ C(X)$ ultrabornologiques, Bull. Soc. Roy. Sci. Liège 40 (1971), 119-121. MR 45 # 872. MR 0291781 (45:872)
  • [7] J. Dugundji, Topology, Allyn and Bacon, Boston, Mass., 1966. MR 33 # 1824. MR 0193606 (33:1824)
  • [8] D. H. Fremlin, D. J. H. Garling and R. Haydon, Bounded measures on topological spaces, Proc. London Math. Soc. (3) 25 (1972), 115-136. MR 49 # 9144. MR 0344405 (49:9144)
  • [9] L. Gillman and M. Jerison, Rings of continuous functions, Univ. Ser. in Higher Math., Van Nostrand, Princeton, N. J., 1960. MR 22 # 6994. MR 0116199 (22:6994)
  • [10] S. L. Gulden, W. M. Fleischman and J. H. Weston, Linearly ordered topological spaces, Proc. Amer. Math. Soc. 24 (1970), 197-203. MR 40 # 3511. MR 0250272 (40:3511)
  • [11] D. Gulick, Duality theory for spaces of continuous functions (to appear).
  • [12] -, Duality theory for the strict topology, Studia Math. 49 (1973/74), 195-208. MR 48 # 12013. MR 0333688 (48:12013)
  • [13] -, The $ \sigma $-compact-open topology and its relatives, Math. Scand. 30 (1972), 159-176. MR 48 # 9366. MR 0331031 (48:9366)
  • [14] R. Haydon, On compactness in spaces of measures and measurecompact spaces, Proc. London Math. Soc. (3) 29 (1974), 1-16. MR 0361745 (50:14190)
  • [15] R. Haydon, Sur un problème de H. Buchwalter, C. R. Acad. Sci. Paris Sér. A-B 275 (1972), A1077-A1080. MR 47 # 3931. MR 0315382 (47:3931)
  • [16] -, Trois exemples dans la théorie des espaces de fonctions continues, C. R. Acad. Sci. Paris Sér. A-B 276 (1973), A685-A687. MR 48 # 4675. MR 0326331 (48:4675)
  • [17] T. Isawata, On closed countably-compactifications, General Topology and Appl. 4 (1974), 143-167. MR 0345072 (49:9811)
  • [18] J. L. Kelley, I. Namioka et al., Linear topological spaces, Univ. Ser. in Higher Math., Van Nostrand, Princeton, N. J., 1963. MR 29 # 3851. MR 0166578 (29:3851)
  • [19] J. D. Knowles, On the existence of non-atomic measures, Mathematika 14 (1967), 62-67. MR 35 # 5568. MR 0214719 (35:5568)
  • [20] P. D. Morris and D. E. Wulbert, Functional representation of topological algebras, Pacific J. Math. 22 (1967), 323-337. MR 35 # 4730. MR 0213876 (35:4730)
  • [21] S. E. Mosiman and R. F. Wheeler, The strict topology in a completely regular setting: relations to topological measure theory, Canad. J. Math. 24 (1972), 873-890. MR 48 # 6909. MR 0328567 (48:6909)
  • [22] L. Nachbin, Topological vector spaces of continuous functions, Proc. Nat. Acad. Sci. U. S. A. 40 (1954), 471-474. MR 16, 156. MR 0063647 (16:156h)
  • [23] M. Rajagopalan and R. F. Wheeler, Sequential compactness of X implies a completeness property for $ C(X)$, Canad. J. Math. 28 (1976), 207-210. MR 0405341 (53:9135)
  • [24] M. E. Rudin, Lectures on set theoretic topology, C. B. M. S. Regional Conference Series, no. 23, Amer. Math. Soc., Providence, R. I. , 1975. MR 0367886 (51:4128)
  • [25] W. Rudin, Continuous functions on compact spaces without perfect subsets, Proc. Amer. Math. Soc. 8 (1957), 39-42. MR 19, 46. MR 0085475 (19:46b)
  • [26] H. Schaefer, Topological vector spaces, Macmillan, New York, 1966. MR 33 # 1689. MR 0193469 (33:1689)
  • [27] F. D. Sentilles, Bounded continuous functions on a completely regular space, Trans. Amer. Math. Soc. 168 (1972), 311-336. MR 45 # 4133. MR 0295065 (45:4133)
  • [28] T. Shirota, On locally convex vector spaces of continuous functions, Proc. Japan Acad. 30 (1954), 294-298. MR 16, 275. MR 0064389 (16:275d)
  • [29] F. D. Tall, An alternative to the continuum hypothesis and its uses in general topology (to appear).
  • [30] V. S. Varadarajan, Measures on topological spaces, Mat. Sb. 55 (97) (1961), 35-100; English transl., Amer. Math. Soc. Transl. (2) 48 (1965), 161-228. MR 26 # 6342. MR 0148838 (26:6342)
  • [31] S. Warner, The topology of compact convergence on continuous function spaces, Duke Math. J. 25 (1958), 265-282. MR 21 # 1521. MR 0102735 (21:1521)
  • [32] W. A. R. Weiss, Countably compact, perfectly normal spaces may or may not be compact, Notices Amer. Math. Soc. 22 (1975), A-334. Abstract # 75T-G32.
  • [33] R. F. Wheeler, Well-behaved and totally bounded approximate identities for $ {C_0}(X)$, Pacific J. Math. (to appear). MR 0458150 (56:16353)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46E10

Retrieve articles in all journals with MSC: 46E10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1976-0425593-0
Keywords: Bounded set, compact-open topology, countably compact, convex strong Mackey property, infrabarrelled space, Mackey space, strict topology, Warner bounded set
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society