Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



A Paley-Wiener theorem for locally compact abelian groups

Author: Gunar E. Liepins
Journal: Trans. Amer. Math. Soc. 222 (1976), 193-210
MSC: Primary 43A32
MathSciNet review: 0430679
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Extending the Paley-Wiener theorem to locally compact Abelian groups involves both finding a suitable Laplace transform and a suitable analogue for analytic functions. The Laplace transform is defined in terms of complex characters, and differentiability is defined with use of one-parameter subgroups. The resulting theorem is much as conjectured by Mackey [7],($ ^{1}$) the major differences being that the theorem is very much an $ {L^2}$ theorem and that the problem exhibits a surprising finite dimensional nature.

References [Enhancements On Off] (What's this?)

  • [1] W. F. Donoghue, Jr., Distributions and Fourier transforms, Academic Press, New York, 1969.
  • [2] László Fuchs, Infinite abelian groups. Vol. II, Academic Press, New York-London, 1973. Pure and Applied Mathematics. Vol. 36-II. MR 0349869
  • [3] Robert C. Gunning and Hugo Rossi, Analytic functions of several complex variables, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965. MR 0180696
  • [4] Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. I, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 115, Springer-Verlag, Berlin-New York, 1979. Structure of topological groups, integration theory, group representations. MR 551496
  • [5] Irving Kaplansky, Infinite abelian groups, University of Michigan Press, Ann Arbor, 1954. MR 0065561
  • [6] Lynn H. Loomis, An introduction to abstract harmonic analysis, D. Van Nostrand Company, Inc., Toronto-New York-London, 1953. MR 0054173
  • [7] George W. Mackey, The Laplace transform for locally compact Abelian groups, Proc. Nat. Acad. Sci. U. S. A. 34 (1948), 156–162. MR 0024446
  • [8] Deane Montgomery and Leo Zippin, Topological transformation groups, Interscience Publishers, New York-London, 1955. MR 0073104
  • [9] Raymond E. A. C. Paley and Norbert Wiener, Fourier transforms in the complex domain, American Mathematical Society Colloquium Publications, vol. 19, American Mathematical Society, Providence, RI, 1987. Reprint of the 1934 original. MR 1451142
  • [10] L. Pontrjagin, Topological groups, Princeton Math. Ser., vol. 2, Princeton Univ. Press, Princeton, N. J., 1939. MR 1, 44. K. A. Ross, See E. Hewitt [4].
  • [11] Walter Rudin, Fourier analysis on groups, Interscience Tracts in Pure and Applied Mathematics, No. 12, Interscience Publishers (a division of John Wiley and Sons), New York-London, 1962. MR 0152834
  • [12] Walter Rudin, Real and complex analysis, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966. MR 0210528
  • [13] R. Saeks, Resolution space operators and systems, Springer-Verlag, Berlin-New York, 1973. Lecture Notes in Economics and Mathematical Systems, Vol. 82. MR 0465307
  • [14] Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton University Press, Princeton, N.J., 1971. Princeton Mathematical Series, No. 32. MR 0304972
  • [15] Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
  • [16] Kôsaku Yosida, Functional analysis, Die Grundlehren der Mathematischen Wissenschaften, Band 123, Academic Press, Inc., New York; Springer-Verlag, Berlin, 1965. MR 0180824

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 43A32

Retrieve articles in all journals with MSC: 43A32

Additional Information

Keywords: Locally compact Abelian groups, Laplace transform, group character
Article copyright: © Copyright 1976 American Mathematical Society