ON BOUNDED FUNCTIONS SATISFYING AVERAGING CONDITIONS. II

BY

ROTRAUT GOUBAU CAHILL

ABSTRACT. Let $S(f)$ denote the subspace of $L^\infty(R^n)$ consisting of those real valued functions f for which

$$\lim_{r \to 0} \frac{1}{|B(x, r)|} \int_{B(x, r)} f(y) dy = f(x)$$

for all x in R^n and let $L(f)$ be the subspace of $S(f)$ consisting of the approximately continuous functions. A number of results concerning the existence of functions in $S(f)$ and $L(f)$ with special properties are obtained. The extreme points of the unit balls of both spaces are characterized and it is shown that $L(f)$ is not a dual space. As a preliminary step, it is shown that if E is a G_δ set of measure 0 in R^n, then the complement of E can be decomposed into a collection of closed sets in a particularly useful way.

Introduction. Let $L^\infty(R^n)$ denote the space of all real valued $L^\infty(R^n)$ functions. If f is in $L^\infty(R^n)$ and if E is a measurable subset of R^n, let $J(f, E)$ denote $\int_E f$. For each f in $L^\infty(R^n)$ define:

$$L(f) = \left\{ x \in R^n \mid \lim_{r \to 0} (J(|f - f(x)|, B(x, r))/|B(x, r)|) = 0 \right\}$$

where $B(x, r) = \{ y \in R^n \mid |y - x| < r \}$, i.e. $L(f)$ is the Lebesgue set of f.

$$S(f) = \left\{ x \in R^n \mid \lim_{r \to 0} (J(f, B(x, r))/|B(x, r)|) = f(x) \right\}.$$

Let $S(n, T)$ be the subspace of $L^\infty(R^n)$ consisting of those functions f for which $S(f) = R^n$, and let $L(n, T)$ be the subspace of $L^\infty(R^n)$ consisting of those functions for which $L(f) = R^n$.

A function f in $L^\infty(R^n)$ is defined to be approximately continuous at x if x is a point of density of $\{ y \mid |f(y) - f(x)| < \epsilon \}$ for every $\epsilon > 0$. It is easy to see that $L(n, T)$ consists precisely of those functions in $L^\infty(R^n)$ which are approximately continuous at each point of R^n. An example of a function which is in $S(n, T)$ but not in $L(n, T)$ is the function

Received by the editors March 12, 1974.

Key words and phrases. Approximately continuous, extreme points, G_δ sets of measure 0 in R^n.

295 Copyright © 1976, American Mathematical Society

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
The example shows that $S(n, T)$ is not an algebra, whereas it is readily shown that $L(n, T)$ is an algebra.

In this paper a number of results will be obtained about the existence of functions in $S(n, T)$ and $L(n, T)$ which have special properties. The extreme points of the unit balls of these spaces will also be characterized. In the case of $L(n, T)$ it will be shown that there are only two such extreme points.

The proofs depend primarily on the fact that if E is a G_6 subset of measure 0 contained in \mathbb{R}^n, then E', the complement of E, can be decomposed in a special way into a collection of closed sets $\{\Phi_k\}_{k \geq 1}$ so that the function μ defined in \mathbb{R}^n by

$$
\mu(x) = \begin{cases}
0, & x \in E, \\
\frac{1}{\inf_x \{\lambda \mid x \in \Phi_k\}}, & x \notin E,
\end{cases}
$$

is approximately continuous and has a number of other useful properties. It will first be shown how to obtain such a decomposition of E'. The procedure used generalizes a method developed by Zygmunt Zahorski for obtaining a decomposition of the complement of a G_6 set of measure 0 contained in the open interval $(0, 1)$ [2].

The work presented here was done as part of a Ph.D. thesis under the guidance of Professor Lee Rubel of the University of Illinois.

Inverse Zahorski functions.

Lemma 1. Let M_1 and M_2 be two bounded measurable subsets of \mathbb{R}^n with measures u_1 and u_2 respectively. Suppose that M_2 is a closed subset of M_1 consisting only of points of density of M_1. Then for every positive number p, there is a closed set M_p with $M_2 \subset M_p \subset M_1$ satisfying:

1. Every point of M_2 is a point of density of M_p and every point of M_p is a point of density of M_1.
2. $|M_p| \geq u_2 + (1 - 2^{-1-p})(u_1 - u_2)$.
3. Let $x \in M_2$, and let ϵ be an arbitrary number in $(0, 1)$. If r is any positive number for which $(|M_1 \cap B(x, r)|/|B(x, r)|) > 1 - \epsilon$, then

$$
(|M_p \cap B(x, r)|/|B(x, r)|) > 1 - \epsilon - 2^{-m-p + c_n}
$$

for every positive integer m for which $r \leq 1/m$, where c_n is a constant which depends only on the dimension n.

Proof. H. Whitney has shown that since M_2 is closed, M_2' is a countable union of closed cubes Q_k with disjoint interiors, where these cubes may be chosen so that the following conditions hold:
(1) $\text{diam } Q_k \leq \text{dist}(Q_k, M_2) \leq 4 \text{ diam } Q_k$.

(2) If Q_k^* is the cube with the same center as Q_k and expanded by a factor $1 + \epsilon$ ($0 < \epsilon < \frac{1}{4}$, ϵ fixed), then Q_k^* is contained in the union of all the cubes which touch Q_k.

(3) For each cube Q_k there are at most $N = (12)^n$ cubes which touch Q_k [1, pp. 167–169].

A cube Q_k will be said to be of class m, m a positive integer, if either

$$(1/(m + 1)) < \text{diam } Q_k \leq (1/m) \text{ or } m < \text{diam } Q_k < m + 1.$$

If Q_k is of class m and if $|Q_k \cap M_1| > 0$, let F_k be a closed subset of $Q_k \cap M_1$ consisting only of points of density of M_1, with $|F_k| \geq |Q_k \cap M_1|(1 - 2^{-m-\epsilon})$. Set $M_p = M_2 \cup_k F_k$.

It will be shown that M_p satisfies all the required conditions. First, M_p is closed, for if $(q_m)_{m \geq 1}$ is a convergent sequence in M_p, say $q_m \rightarrow q$, and if $q \notin M_2$, then q is in some cube Q_x and some neighborhood of q is contained in Q_x^*. Since Q_x^* is contained in the union of at most N cubes Q_k, this neighborhood is contained in the union of at most N cubes. Thus for m sufficiently large, say $m \geq M$, $(q_m)_{m \geq M}$ is contained in at most N of the sets F_k. Since this union is closed, q is in some F_k and hence M_p is closed.

By construction, each point of M_p is a point of density of M_1. It will now be shown that each point of M_2 is a point of density of M_p. The proof will be such that (3) will be proved simultaneously.

Let x be in M_2. Let ϵ be an arbitrary number in $(0, 1)$ and let m be an arbitrary positive integer. Since, by assumption, x is a point of density of M_1, there is a $0 < \delta \leq 1/m$ such that for $r < \delta$, $(|B(x, r) \cap M_1|/|B(x, r)|) > 1 - \epsilon$.

Set $d(x, r) = (|M_1 \cap B(x, r)|/|B(x, r)|) - (|M_p \cap B(x, r)|/|B(x, r)|)$.

It will be shown that $d(x, r) \leq 2^{-m-\epsilon+c_n}$. From this it follows that $(|M_p \cap B(x, r)|/|B(x, r)|) > 1 - \epsilon - 2^{-m-\epsilon+c_n}$, which verifies (1) since ϵ and m were arbitrary.

The proof that $d(x, r) \leq 2^{-m-\epsilon+c_n}$ will depend only on the fact that m is a positive integer for which $r < 1/m$. Thus (3) will also be proved.

Let K be the set of all integers for which Q_k has nonempty intersection with the boundary of $B(x, r)$ and set

$$A = \bigcup_{k \in K} Q_k; \quad A_1 = A \cap B(x, r); \quad A_2 = A \cap B(x, r)^c;$$

$$\xi = |M_p \cap A|/|M_1 \cap A| \text{ if } |M_1 \cap A| > 0, \quad \xi = 1 \text{ if } |M_1 \cap A| = 0;$$

$$\xi_1 = |M_p \cap A_1|/|M_1 \cap A_1| \text{ if } |M_1 \cap A_1| > 0, \quad \xi_1 = 1 \text{ if } |M_1 \cap A_1| = 0;$$
\[\xi_2 = |M_p \cap A_2|/|M_1 \cap A_2| \text{ if } |M_1 \cap A_2| > 0, \quad \xi_2 = 1 \text{ if } |M_1 \cap A_2| = 0. \]

We have

\[d(x, r) = \left(1/|B(x, r)|\right) \left\{ \sum_{Q_k \subset B(x, r)} |Q_k \cap M_1| - F_k + |(M_1 - M_p) \cap A_1| \right\}. \]

Since diam \(Q_k \) < dist\((Q_k, M_2) \) < \(r < 1/m \) for each cube \(Q_k \) which intersects \(B(x, r), \) \(|Q_k \cap M_1| - F_k \) < \(2^{-m-p} |Q_k \cap M_1|, \) and thus

\[d(x, r) \leq \left(1/|B(x, r)|\right) \left\{ 2^{-m-p} \sum_{Q_k \subset B(x, r)} |Q_k \cap M_1| + |(M_1 - M_p) \cap A_1| \right\}. \]

Thus if \(|M_1 \cap A_1| = 0, \) \(d(x, r) \leq 2^{-m-p}. \)

Suppose \(|M_1 \cap A_1| > 0. \) Observe that

\[d(x, r) \leq \left(1/|B(x, r)|\right) \left\{ 2^{-m-p} \sum_{Q_k \subset B(x, r)} |Q_k \cap M_1| + (1 - \xi_2)|M_1 \cap A_1| \right\}. \]

The object of the calculations which follow is to show that \(1 - \xi_1 \leq 2^{-m-p}\{1 + (|A_2|/|M_1 \cap A_1|)\}. \)

By solving the equation \(\xi |M_1 \cap A_1| = \xi_1 |M_1 \cap A_1| + \xi_2 |M_1 \cap A_2| \) for \(\xi_1 \) and observing that \(|M_1 \cap A_2| = |M_1 \cap A_1| + |M_1 \cap A_2|, \) we obtain

\[\xi_1 = \xi - (\xi_2 |M_1 \cap A_2| - \xi |M_1 \cap A_1|)/|M_1 \cap A_1|. \]

Since \(|F_k| \geq |Q_k \cap M_1| (1 - 2^{-m-p}) \) for each \(Q_k \) which intersects \(B(x, r), \)
\(|M_p \cap A_1| \geq (1 - 2^{-m-p}) |M_1 \cap A_1| \) and \(\xi > 1 - 2^{-m-p}. \) Thus

\[\xi_1 > 1 - 2^{-m-p} - \{(\xi_2 - (1 - 2^{-m-p}))/|M_1 \cap A_1|\} |M_1 \cap A_2|. \]

Since \(0 < \xi_2 < 1 \) and \(|M_1 \cap A_2| \leq |A_2|, \)

\[\xi_1 > 1 - 2^{-m-p} - 2^{-m-p} |A_2|/|M_1 \cap A_1|, \]

and

\[1 - \xi_1 \leq 2^{-m-p}\{1 + (|A_2|/|M_1 \cap A_1|)\}. \]

It follows that

\[d(x, r) \leq 2^{-m-p}\{1 + \{|M_1 \cap A_1| (1 + (|A_2|/|M_1 \cap A_1|))\}/|B(x, r)|\} \]

\[\leq 2^{-m-p}\{2 + (|A_2|/|B(x, r)|)\}. \]

Since diam \(Q_k \leq r \) for each \(Q_k \) which intersects \(B(x, r), A_2 \subset B(x, 2r) - B(x, r). \) Thus,

\[(|A_2|/|B(x, r)|) \leq (1/|B(x, r)|)(|B(x, 2r)| - |B(x, r)|). \]
The number $d_n = (1/|B(x, r)|)(|B(x, 2r)| - |B(x, r)|)$ depends only on n and $d(x, r) \leq 2^{-m-p}(2 + d_n) \leq 2^{-m-p+c_n}$, where $2c_n = 2 + d_n$. Therefore, (1) and (3) both hold.

Finally,

$$|M_\rho| = |M_2| + \sum_k |F_k| \geq u_2 + \sum_k |Q_k \cap M_1| (1 - 2^{-m-p})$$

$$> u_2 + (1 - 2^{-p})(\sum_k |Q_k \cap M_1| = u_2 + (1 - 2^{-p})(u_1 - u_2),$$

so that (2) also holds. Q.E.D.

Corollary 1. For each G_6 set E, of measure 0 in R^n, there is an increasing sequence of compact sets $\{F_k\}_{k \geq 1}$ with $|F_k| > k$ such that $E' = \bigcup_k F_k$ and $|B(x, r) \cap F_{k+1}|/|B(x, r)| > 1 - 2^{-m-k+c_n}$ whenever $x \in F_k$ and $r \leq 1/m$, m a positive integer.

Proof. Since E is a G_6 of measure 0, there exists an increasing sequence of closed sets $\{F_k\}_{k \geq 1}$ with $E' = \bigcup_{k \geq 1} F_k$. Let $\{a_k\}_{k \geq 1}$ be a strictly increasing sequence of positive numbers for which $|B(0, a_k)| > (1/(1 - 2^{-k})) \cdot (k - 2^{-k})$ and for which $a_{k+1} - a_k$ is greater than 1 for all k. Let P_1 be any closed subset of $E' \cap B(0, a_1)$ for which $|P_1| > 1$ and set $F_1 = P_1 \cup (F_1 \cap B(0, a_1))$.

Since $F_1 \subset E' \cap B(0, a_2)$ and $|F_1| + (1 - 2^{-2})(|B(0, a_2)| - |F_1|) > 2$, the preceding lemma implies that there is a closed set P_2 of measure greater than 2 with $F_1 \subset P_2 \subset E' \cap B(0, a_2)$ which satisfies conditions (1), (2) and (3) of the lemma, with $M_2 = F_1$, $M_1 = E' \cap B(0, a_2)$ and $p = 1$.

For each x in F_1 and $r < 1$, $B(x, r) \subset B(0, a_2)$ since $a_2 - a_1 > 1$. Thus

$$|E' \cap B(0, a_2) \cap B(x, r)|/|B(x, r)| = 1$$

and by (3) of Lemma 4.1,

$$|P_2 \cap B(x, r)|/|B(x, r)| > 1 - 2^{-m-1+c_n}$$

for every positive integer m such that $r < 1/m$. Set $F_2 = P_2 \cup (F_2 \cap B(0, a_2))$.

Continue inductively. Having defined F_k for $k \leq s$ so that $F_k \subset F_k \cap B(0, a_k)$, $|F_k| > k$ and $|F_k \cap B(x, r)|/|B(x, r)| > 1 - 2^{-m-1(k-1)+c_n}$ for $x \in F_{k-1}$ and $r < 1/m$, let P_{s+1} be a closed set of measure greater than $s + 1$ for which $F_s \subset P_{s+1} \subset E' \cap B(0, a_{s+1})$ and for which (1), (2) and (3) of Lemma 4.1 hold with $M_2 = F_s$, $p = s$ and $M_1 = E' \cap B(0, a_{s+1})$. Since

$$|E' \cap B(0, a_{s+1}) \cap B(x, r)|/|B(x, r)|$$

equals 1 for each x in F_s and $r < 1, (3)$ of the lemma implies that $|P_{s+1} \cap B(x, r)|/|B(x, r)| > 1 - 2^{-s-m+c_n}$ for each positive integer m for which $r < 1/m$. Set $F_{s+1} = P_{s+1} \cup (F_{s+1} \cap B(0, a_{s+1}))$.

The sequence $\{F_k\}_{k \geq 1}$ satisfies the conditions of the theorem. Q.E.D.

We observe that by suitable choice of a_1 and P_1, F_1 can be made to contain a specified compact subset of E'.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
If E is a $G_δ$ set of measure 0 in \mathbb{R}^n, an increasing sequence of compact subsets of \mathbb{R}^n satisfying the conditions of Corollary 1 will be called a Zahorski sequence for E.

Theorem 1. Let E be a $G_δ$ set of measure 0 in \mathbb{R}^n. There exists a real valued, measurable function u defined on \mathbb{R}^n having the following properties:

1. $0 \leq u \leq 1$.
2. u is 0 precisely on E.
3. u is continuous at each point of E.
4. For every x_0 in \mathbb{R}^n and every $\varepsilon > 0$, there is an $r > 0$ such that $u(x) \leq (1/(1 - \varepsilon))u(x_0)$ whenever x is in $B(x_0, r)$.
5. Every x in \mathbb{R}^n is a Lebesgue point of u.

Proof. Let $\{\Phi_k\}_{k=1}^\infty$ be a Zahorski sequence for E. A closed set Φ_r will now be defined for each number r of the form $m/2^s$, where m and s are positive integers and $m > 2^s$. These closed sets will satisfy these two conditions:

(a) $\Phi_s \subset \Phi_s'$ if $s > s'$,
(b) Φ_s consists only of points of density of Φ_s if $s > s'$.

For each odd integer $k > 2$, $k = 2m + 1$, let $\Phi_{r/2k}$ be a closed set with $\Phi_m \subset \Phi_{k/2} \subset \Phi_{m+1}$ and $|\Phi_{k/2}| > \frac{1}{2}(|\Phi_{m+1}| + |\Phi_m|)$, for which every point of Φ_m is a point of density of $\Phi_{k/2}$ and every point of $\Phi_{k/2}$ is a point of density of Φ_{m+1}. Such a set exists by Lemma 1. Having defined $\Phi_{r/2k}$ for all $r > 2^k$ and all $k < s$, let $\Phi_{r/2^{s+1}}$, $r > 2^{s+1}$, $r = 2t + 1$, be a closed set with

$\Phi_{t/2^s} \subset \Phi_{r/2^{s+1}} \subset \Phi_{(t+1)/2^s}$ and $|\Phi_{r/2^{s+1}}| > \frac{1}{2}(|\Phi_{(t+1)/2^s}|)$,

for which each point of $\Phi_{t/2^s}$ is a point of density of $\Phi_{r/2^{s+1}}$ and each point of $\Phi_{r/2^{s+1}}$ is a point of density of $\Phi_{(t+1)/2^s}$.

Now let λ be any real number greater than or equal to 1 and define $\Phi_\lambda = \bigcap_{m \geq \lambda 2k} \Phi_{m/2^k}$. The collection of closed sets $\{\Phi_\lambda\}_{\lambda \geq 1}$ also satisfies (a) and (b).

Define the function u on \mathbb{R}^n by

$$u(p) = \begin{cases} \inf \{\lambda | p \in \Phi_\lambda \} & \text{if } p \notin E, \\ 0 & \text{if } p \in E. \end{cases}$$

Properties (1) and (2) from the statement of the theorem follow immediately from the definition of u. (3)--(5) will now be verified.

Let p be in E, and let $\varepsilon > 0$ be arbitrary. If r is less than $\text{dist}(p, \Phi_{1/\varepsilon})$, then $B(p, r) \cap \Phi_{1/\varepsilon}$ is empty and $u(x)$ is less than ε for x in $B(p, r)$. Thus u is continuous on E.

Let x_0 be in E', and let $\varepsilon > 0$ be arbitrary. If r is less than $	ext{dist}(x_0, \Phi_{(1-\varepsilon)/u(x_0)})$, then $u(x) \leq u(x_0)/(1 - \varepsilon)$ for all x in $B(x_0, r)$. Thus (4) holds. This property ensures that u is measurable.
Since \(u \) is continuous on \(E \), (5) holds for every \(x \) in \(E \). Let \(x_0 \) be in \(E' \) and let \(\epsilon > 0 \) be arbitrary. Since \(x_0 \) is in \(\Phi_{(1+\epsilon)/u(x_0)} \), \(x_0 \) is a point of density of \(\Phi_{(1+\epsilon)/u(x_0)} \) and thus of \(\{ y : u(y) > u(x_0)/(1+\epsilon) \} \). This, together with (4) and the boundedness of \(u \), yields (5).

Thus \(u \) satisfies all the required conditions. Q.E.D.

If \(E \) is a \(G_6 \) set of measure 0 in \(\mathbb{R}^n \), a collection of closed sets \(\{ \Phi_{\lambda} \}_{\lambda \geq 1} \), constructed in the manner of the first part of the proof of this last theorem, will be called a Zahorski collection for \(E \). The function

\[
 u(x) = \begin{cases}
 \frac{1}{\inf_{\lambda} \{ \lambda : x \in \Phi_{\lambda} \}}, & x \notin E, \\
 0, & x \in E,
\end{cases}
\]

will be called the corresponding inverse Zahorski function.

Applications to \(S(n, T) \) and \(L(n, T) \). An immediate consequence of Theorem 1 is

Theorem 2. If \(E \) is a \(G_6 \) set of measure 0 in \(\mathbb{R}^n \), then there is a function in \(L(n, T) \) of norm 1 which vanishes precisely on \(E \).

Proof. Let \(u \) be an inverse Zahorski function for \(E \). \(u \) has norm 1 and vanishes precisely on \(E \). Since, in addition, every point of \(\mathbb{R}^n \) is a Lebesgue point of \(u \), \(u \) satisfies the conditions of the theorem. Q.E.D.

If \(E \) is a \(G_6 \) of measure 0 contained in \(\mathbb{R}^n \) and if \(F \) is a compact subset of \(E' \), then it is possible to find a Zahorski collection \(\{ \Phi_{\lambda} \}_{\lambda \geq 1} \) for \(E \) for which \(F \) is a subset of \(\Phi_{1} \). The corresponding inverse Zahorski function has norm 1, is 0 on \(E \) and identically 1 on \(F \). Since every point of \(\mathbb{R}^n \) is a Lebesgue point of \(u \), \(u \) is in \(L(n, T) \). We therefore also have

Theorem 3. If \(E \) is a \(G_6 \) of measure 0 in \(\mathbb{R}^n \) and if \(F \) is a compact subset of \(\mathbb{R}^n \), disjoint from \(E \), then there is a function of norm 1 in \(L(n, T) \) which is 0 at each point of \(E \) and 1 at each point of \(F \).

Corollary 2. If \(\{ w_k \}_{k \geq 1} \) is an arbitrary sequence of distinct points in \(\mathbb{R}^n \) and if \(\{ a_k \}_{k \geq 1} \) is an absolutely summable sequence of real numbers, then there is a function \(g \) in \(L(n, T) \) for which \(g(w_k) = a_k \) for all \(k \).

Proof. For each \(i \), let \(S_i \) be a \(G_6 \) of measure 0 containing \(\{ w_k \}_{k \geq 1} \) - \(\{ w_i \} \) and not containing \(w_i \). Let \(u_i \) be an inverse Zahorski function for \(S_i \) for which \(u_i(w_i) = 1 \).

Since \(\sum_{k=1}^{\infty} |a_k| < \infty \) and \(\|u_i\|_{\infty} = 1 \) for all \(i \), every point of \(\mathbb{R}^n \) is a Lebesgue point of the function \(g = \sum_{k=1}^{\infty} a_k u_k \). Thus \(g \) is in \(L(n, T) \). Since \(u_i(w_k) = \delta_{ik}, g(w_k) = a_k \) for every \(k \). Q.E.D.

Corollary 3. If \(\{ w_k \}_{k \geq 1} \) is a convergent sequence of distinct points of
R^n with limit $w \neq w_k$ any k and if $\{a_k\}_{k \geq 1}$ is an arbitrary sequence of 0's and 1's, then there is a function g in $L(n, T)$, with $\|g\|_\infty = 1$, for which $g(w_k) = a_k$ for all k.

The proof is similar to that of Corollary 2.

Lemma 2. Let f be in $L^\infty_R(R^n)$ and let E be a G_δ of measure 0 containing $\{x | x \notin L(f)\}$. If u is an inverse Zahorski function for E, then uf is in $L(n, T)$.

Proof. It is sufficient to show that $L(uf) = R^n$. If x is in E, $u(x) = 0$ and

$$\lim_{r \to 0} \frac{\int (|uf - u(x)f(x)|, B(x, r))/|B(x, r)|}{r} = \lim_{r \to 0} \frac{\int (|u|, B(x, r))/|B(x, r)|}{r} = 0.$$

If $x \notin E$, then x is a Lebesgue point of both u and f and so also for the product. Q.E.D.

Thus every function in $L^\infty_R(R^n)$ can be multiplied by a suitable inverse Zahorski function so that the product is in $L(n, T)$.

Theorem 4. If f is in $L^\infty_R(R^n)$ and if F is a compact subset of the Lebesgue points of f, then there is a function in $L(n, T)$ whose restriction to F is f.

Proof. Let E be a G_δ of measure 0 disjoint from F, which contains $\{x \in R^n | x \notin L(f)\}$. Let $\{\phi_k\}_{k \geq 1}$ be a Zahorski collection for E with $F \subset \phi_1$ and let u be the corresponding inverse Zahorski function. uf is the required function. Q.E.D.

Consequently $L(n, T)$ is locally dense in measure in $L^\infty_R(R^n)$, i.e. if F is a compact subset of R^n, then there is a sequence of functions in $L(n, T)$ which converges in measure to f on F.

Lemma 2 may be applied to characterize the extreme points of the unit ball of $S(n, T)$.

Theorem 5. F is an extreme point of the unit ball of $S(n, T)$ if and only if $|F| = 1$ a.e.

Proof. If $|F| = 1$ a.e., then F is an extreme point of the unit ball of $L^\infty_R(R^n)$ and hence also of $S(n, T)$. Conversely, suppose F fails to have modulus 1 at each point of some subset of R^n of positive measure. Let E be a G_δ of measure 0 in R^n containing $\{x \in R^n | x \notin L(1 - |F|)\}$. Let u be an inverse Zahorski function for E. By Lemma 5.1, $u(1 - |F|)$ is in $L(n, T)$ and so in $S(n, T)$. Since $u(1 - |F|) \leq 1 - |F|$, $\|u(1 - |F|) - F\|_\infty \leq 1$ and $\|u(1 - |F|) + F\|_\infty \leq 1$ so that F is not extreme. Q.E.D.

It is easy to see that the same result holds for the unit ball of $L(n, T)$, i.e. F is an extreme point of the unit ball of $L(n, T)$ if and only if $|F| = 1$ a.e. If
|F| = 1 a.e., then F is an extreme point of S(n, T) and so also of L(n, T). If F is in L(n, T), then it follows from the inequality
\[J(|F| - |F(x)|, B(x, r)) < J(|F - F(x)|, B(x, r)) \]
that 1 - |F| is also in L(n, T). Thus if |F| is less than 1 on a set of positive measure, then \(G = 1 - |F| \) is a function in L(n, T) which satisfies \(|F - G|_\infty < 1 \) and \(\|F + G\|_\infty < 1 \) so that F is not extreme.

Theorem 6. L(n, T) is not the dual of a Banach space.

Proof. It is sufficient to show that the only extreme points of the unit ball of L(n, T) are the constant functions 1 and -1. That this is so is a consequence of the following lemma:

Lemma 3. If f is a function in L(n, T) which assumes the value 0 or 1 a.e., then f is constant.

Proof. Let \(g(x) = f(x)(1 - f(x)) \). Since
\[g(x) = \lim_{r \to 0} J(g, B(x, r))/|B(x, r)| = 0 \]
for each \(x \) in \(\mathbb{R}^n \), f actually assumes the values 0 or 1 everywhere.

Let \(K = \{ x \in \mathbb{R}^n | f \text{ is discontinuous at } x \} \). It is sufficient to show that \(K \) is empty.

Suppose \(K \) is not empty.

Claim. If \(x_0 \in K \), then every neighborhood of \(x_0 \) contains some \(x \) in \(K \) for which \(f(x) \neq f(x_0) \).

Proof of Claim. Let \(x_0 \) be in \(K \) and suppose, without loss of generality, that \(f(x_0) = 1 \). Let \(B(x_0, r) \) be an arbitrary ball in \(\mathbb{R}^n \) with center at \(x_0 \) and having radius \(r \). Let \(s \) be any number in \((0, r/2)\). Since f is discontinuous at \(x_0 \), there is some \(a \) in \(B(x_0, s) \) for which \(f(a) = 0 \). If \(a \) is in \(K \), we are done. If \(a \) is not in \(K \), f is continuous at \(a \) and so vanishes in a neighborhood of \(a \). Set \(t_a = \sup \{ t > 0 | f \text{ is identically 0 in } B(a, t) \} \). B(a, ta) is a subset of B(x0, r) and is not tangent to B(x0, r) at any point. (Otherwise we would have \(x_0 \) in B(a, ta) but \(f(x_0) = 1 \).) Let \(x \) be an arbitrary point on the boundary of B(a, ta). We have
\[f(x) = \lim_{r \to 0} J(f, B(x, r))/|B(x, r)| = \lim_{r \to 0} J(f, B(x, r) \cap B(a, t_a))/|B(x, r)| \]
\[\leq \lim_{r \to 0} |B(x, r) \cap B(a, t_a)|/|B(x, r)| < 1. \]
Thus \(f(x) = 0 \) and \(f \) vanishes on the boundary of B(a, ta). By choice of \(t_a \) and
compactness of the boundary, \(f \) must have at least one discontinuity \(x' \) on the boundary of \(B(a, t_0) \). Since \(x' \) is in \(K \cap B(x_0, r) \) and \(f(x') \neq f(x_0) \), the proof of the claim is complete.

Now let \(x_1 \) be in \(K \) with \(f(x_1) = 1 \) and let \(0 < r_1 < \frac{1}{2} \) be such that for \(0 < r < r_1 \),
\[
\frac{|J(f, B(x_1, r))|}{|B(x_1, r)|} > 1 - \frac{1}{2}.
\]

Let \(x_2 \) be any point in \(K \cap B(x_1, r_1) \) for which \(f(x_2) = 0 \), and let \(0 < r_2 < \frac{1}{2} \) be such that for \(0 < r < r_2 \),
\[
\frac{|J(f, B(x_2, r))|}{|B(x_2, r)|} < \frac{1}{2}^2 \quad \text{and} \quad B(x_2, r_2) \subseteq B(x_1, r_1).
\]

Continue defining \(x_k \) and \(r_k \) inductively as follows: If \(k \) is odd, let \(x_k \) be any point in \(K \cap B(x_{k-1}, r_{k-1}) \) for which \(f(x_k) = 1 \) and let \(0 < r_k < \frac{1}{2^k} \) be such that for \(0 < r < r_k \),
\[
B(x_k, r) \subseteq B(x_{k-1}, r_{k-1}) \quad \text{and} \quad \frac{|J(f, B(x_k, r))|}{|B(x_k, r)|} > 1 - \frac{1}{2^k}.
\]

If \(k \) is even choose \(x_k \) and \(r_k \) in a similar way except that \(f(x_k) = 0 \) and
\[
\frac{|J(f, B(x_k, r))|}{|B(x_k, r)|} < \frac{1}{2^k} \quad \text{for} \quad 0 < r < r_k.
\]

Let \(x \) be in the intersection of the \(B(x_k, r_k) \). Then
\[
\lim_{k \to \infty} \frac{|J(f-f(x), B(x_k, r_k))|}{|B(x_k, r_k)|} \leq \left\{ \frac{|B(x, 2r_k)|}{|B(x_k, r_k)|} \right\} \times \lim_{k \to \infty} \frac{|J(f-f(x), B(x, 2r_k))|}{|B(x, 2r_k)|} = 0.
\]

But this implies that \(f(x) \) must be both 0 and 1 which is impossible. Q.E.D.

The example
\[
f(x) = \begin{cases}
1 & \text{if } x > 0, \\
0 & \text{if } x = 0, \\
-1 & \text{if } x < 0,
\end{cases}
\]

shows that there are nonconstant extreme points of the unit ball of \(S(n, T) \).

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN, WASHINGTON COUNTY CENTER, WEST BEND, WISCONSIN 53095