Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

A Plancherel formula for idyllic nilpotent Lie groups
HTML articles powered by AMS MathViewer

by Eloise Carlton PDF
Trans. Amer. Math. Soc. 224 (1976), 1-42 Request permission

Abstract:

A procedure is developed which can be used to compute the Plancherel measure for a certain class of nilpotent Lie groups, including the Heisenberg groups, free groups, two-and three-step groups, the nilpotent part of an Iwasawa decomposition of the R-split form of the classical simple groups ${A_l},{C_l},{G_2}$. Let G be a connected, simply connected nilpotent Lie group. The Plancherel formula for G can be expressed in terms of Plancherel measure of a normal subgroup N and projective Plancherel measures of certain subgroups of $G/N$. To get an explicit measure for G, we need an explicit formula for (1) the disintegration of Plancherel measure of N under the action of G on N, and (2) projective Plancherel measures of ${G_\gamma }/N$, where ${G_\gamma }$ is the stability subgroup at $\gamma$ in N. When both N and ${G_\gamma }/N$ are abelian, the measures (1) and (2) are obtained as special cases of more general problems. These measures combine into Plancherel measure for G.
References
  • Larry Baggett and Adam Kleppner, Multiplier representations of abelian groups, J. Functional Analysis 14 (1973), 299–324. MR 0364537, DOI 10.1016/0022-1236(73)90075-x
  • P. Bernat, N. Conze, M. Duflo, M. Lévy-Nahas, M. Rais, P. Renouard and M. Vergne, Représentations des groupes de Lie résolubles, Dunod, Paris, 1972.
  • N. Bourbaki, Éléments de mathématique. Première partie: Les structures fondamentales de l’analyse. Livre II: Algèbre. Chapitre 9: Formes sesquilinéaires et formes quadratiques, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1272, Hermann, Paris, 1959 (French). MR 0107661
  • N. Bourbaki, Éléments de mathématique. Fasc. XXXVII. Groupes et algèbres de Lie. Chapitre II: Algèbres de Lie libres. Chapitre III: Groupes de Lie, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1349, Hermann, Paris, 1972. MR 0573068
  • —, Intégration. Chap. 5: Intégration des mesures, Actualités Sci. Indust., no. 1244, Hermann, Paris, 1967. MR 35 #322. —, Intégration. Chap. 6: Intégration vectorielle, Hermann, Paris, 1959. MR 23 #A2033.
  • Jacques Dixmier, Les $C^{\ast }$-algèbres et leurs représentations, Cahiers Scientifiques, Fasc. XXIX, Gauthier-Villars Éditeur, Paris, 1969 (French). Deuxième édition. MR 0246136
  • J. Dixmier, Sur les représentations unitaires des groupes de Lie nilpotents. II, Bull. Soc. Math. France 85 (1957), 325–388 (French). MR 95426
  • Jacques Dixmier, Sur les représentations unitaries des groupes de Lie nilpotents. III, Canadian J. Math. 10 (1958), 321–348. MR 95427, DOI 10.4153/CJM-1958-033-5
  • Hans Freudenthal and H. de Vries, Linear Lie groups, Pure and Applied Mathematics, Vol. 35, Academic Press, New York-London, 1969. MR 0260926
  • Melvin Hausner and Jacob T. Schwartz, Lie groups; Lie algebras, Gordon and Breach Science Publishers, New York-London-Paris, 1968. MR 0235065
  • A. A. Kirillov, Unitary representations of nilpotent Lie groups, Uspehi Mat. Nauk 17 (1962), no. 4 (106), 57–110 (Russian). MR 0142001
  • A. A. Kirillov, Plancherel’s measure for nilpotent Lie groups, Funkcional. Anal. i Priložen 1 (1967), no. 4, 84–85 (Russian). MR 0224748
  • Adam Kleppner and Ronald L. Lipsman, The Plancherel formula for group extensions. I, II, Ann. Sci. École Norm. Sup. (4) 5 (1972), 459–516; ibid. (4) 6 (1973), 103–132. MR 342641
  • —, The Plancherel formula for group extensions. II, Ann. Sci. École Norm. Sup. (4) 6 (1973), 103-132. MR 49 #7387.
  • George W. Mackey, Induced representations of locally compact groups. I, Ann. of Math. (2) 55 (1952), 101–139. MR 44536, DOI 10.2307/1969423
  • George W. Mackey, Unitary representations of group extensions. I, Acta Math. 99 (1958), 265–311. MR 98328, DOI 10.1007/BF02392428
  • M. Plancherel, Contribution à l’étude de la représentation d’une fonction arbitraire par des intégrales définies, Rend. Circ. Mat. Palermo 30 (1910), 289-335. L. Pukańszky, Leçons sur les représentations des groupes, Monographies Soc. Math. France, no. 2, Dunod, Paris, 1967. MR 36 #311.
  • Michael Spivak, Calculus on manifolds. A modern approach to classical theorems of advanced calculus, W. A. Benjamin, Inc., New York-Amsterdam, 1965. MR 0209411
  • Garth Warner, Harmonic analysis on semi-simple Lie groups. I, Die Grundlehren der mathematischen Wissenschaften, Band 188, Springer-Verlag, New York-Heidelberg, 1972. MR 0498999
  • André Weil, L’intégration dans les groupes topologiques et ses applications, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 869, Hermann & Cie, Paris, 1940 (French). [This book has been republished by the author at Princeton, N. J., 1941.]. MR 0005741
  • E. Carlton, A Plancherel formula for some nilpotent Lie groups, Ph. D. Thesis, University of Colorado, 1974.
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC: 22E25
  • Retrieve articles in all journals with MSC: 22E25
Additional Information
  • © Copyright 1976 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 224 (1976), 1-42
  • MSC: Primary 22E25
  • DOI: https://doi.org/10.1090/S0002-9947-1976-0425014-8
  • MathSciNet review: 0425014