Maximal chains of prime ideals in integral extension domains. I

Authors:
L. J. Ratliff and S. McAdam

Journal:
Trans. Amer. Math. Soc. **224** (1976), 103-116

MSC:
Primary 13A15; Secondary 13B20

DOI:
https://doi.org/10.1090/S0002-9947-1976-0437513-3

MathSciNet review:
0437513

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let (*R, M*) be a local domain, let *k* be a positive integer, and let *Q* be a prime ideal in such that . Then the following statements are equivalent: (1) There exists an integral extension domain of *R* which has a maximal chain of prime ideals of length *n*. (2) There exists a minimal prime ideal *z* in the completion of *R* such that depth . (3) There exists a minimal prime ideal *w* in the completion of such that depth . (4) There exists an integral extension domain of which has a maximal chain of prime ideals of length . (5) There exists a maximal chain of prime ideals of length in . (6) There exists a maximal chain of prime ideals of length in .

**[1]**Stephen McAdam,*Saturated chains in Noetherian rings*, Indiana Univ. Math. J.**23**(1973/74), 719–728. MR**0332768**, https://doi.org/10.1512/iumj.1974.23.23060**[2]**Evan G. Houston and Stephen McAdam,*Chains of primes in Noetherian rings*, Indiana Univ. Math. J.**24**(1974/75), 741–753. MR**0360566**, https://doi.org/10.1512/iumj.1975.24.24057**[3]**Masayoshi Nagata,*On the chain problem of prime ideals*, Nagoya Math. J.**10**(1956), 51–64. MR**0078974****[4]**Masayoshi Nagata,*Note on a chain condition for prime ideals*, Mem. Coll. Sci. Univ. Kyoto. Ser. A. Math.**32**(1959), 85–90. MR**0108511**, https://doi.org/10.1215/kjm/1250776698**[5]**Masayoshi Nagata,*Local rings*, Interscience Tracts in Pure and Applied Mathematics, No. 13, Interscience Publishers a division of John Wiley & Sons New York-London, 1962. MR**0155856****[6]**L. J. Ratliff Jr.,*On quasi-unmixed local domains, the altitude formula, and the chain condition for prime ideals. I*, Amer. J. Math.**91**(1969), 508–528. MR**0246867**, https://doi.org/10.2307/2373524**[7]**L. J. Ratliff Jr.,*On quasi-unmixed local domains, the altitude formula, and the chain condition for prime ideals. II*, Amer. J. Math.**92**(1970), 99–144. MR**0265339**, https://doi.org/10.2307/2373501**[8]**L. J. Ratliff Jr.,*Characterizations of catenary rings*, Amer. J. Math.**93**(1971), 1070–1108. MR**0297752**, https://doi.org/10.2307/2373746**[9]**Louis J. Ratliff Jr.,*Chain conjectures and 𝐻-domains*, Conference on Commutative Algebra (Univ. Kansas, Lawrence, Kan., 1972), Springer, Berlin, 1973, pp. 222–238. Lecture Notes in Math., Vol. 311. MR**0337945****[10]**L. J. Ratliff Jr.,*Four notes on saturated chains of prime ideals*, J. Algebra**39**(1976), no. 1, 75–93. MR**0399072**, https://doi.org/10.1016/0021-8693(76)90062-4**[11]**Oscar Zariski and Pierre Samuel,*Commutative algebra. Vol. II*, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N. J.-Toronto-London-New York, 1960. MR**0120249**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
13A15,
13B20

Retrieve articles in all journals with MSC: 13A15, 13B20

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1976-0437513-3

Keywords:
Altitude formula,
catenary ring,
catenary chain conjecture,
chain condition for prime ideals,
chain conjecture,
completion of a local ring,
depth conjecture,
first chain condition for prime ideals,
integral extension,
local ring,
maximal chain of prime ideals,
Noetherian ring,
polynomial extension ring,
quasi-unmixed local ring,
second chain condition for prime ideals,
semilocal ring,
unmixed local ring,
upper conjecture

Article copyright:
© Copyright 1976
American Mathematical Society