Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)


Absolute Tauberian constants for Cesàro means of a function

Author: Soraya Sherif
Journal: Trans. Amer. Math. Soc. 224 (1976), 231-242
MSC: Primary 40D10
MathSciNet review: 0420059
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper is concerned with introducing two estimates of the forms $ F \leqslant C{A_k}(\alpha ),F \leqslant D{B_k}(\alpha ),(\alpha > 0)$, where $ F = \smallint_0^\infty {\vert d\{ f(\alpha x) - {\sigma _k}(x)\} \vert,{\sigma _k}(x)} $ denote the Cesàro transform of order k of the function $ f(x) = \smallint_0^x {g(t)\;dt,g(t)} $ is a function of bounded variation in every finite interval of $ t \geqslant 0,{A_k}(\alpha ),{B_k}(\alpha )$ are absolute Tauberian constants, $ C = \smallint_0^\infty {\vert d\{ tg(t)\} \vert < \infty ,D = \smallint_0^\infty {\vert d\{ \phi (t)\} \vert < \infty } } $ and $ \phi (t) = {t^{ - 1}}\smallint_0^t {ug(u)du} $. The constants $ {A_k}(\alpha ),{B_k}(\alpha )$ will be determined.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 40D10

Retrieve articles in all journals with MSC: 40D10

Additional Information

PII: S 0002-9947(1976)0420059-6
Article copyright: © Copyright 1976 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia