QUASI-SIMILAR MODELS
FOR NILPOTENT OPERATORS(1)

BY
C. APOSTOL, R. G. DOUGLAS
AND C. FOIAS

ABSTRACT. Every nilpotent operator on a complex Hilbert space is shown to be quasi-similar to a canonical Jordan model. Further, the para-reflexive operators are characterized generalizing a result of Deddens and Fillmore.

A familiar result states that each nilpotent operator on a finite dimensional complex Hilbert space is similar to its adjoint. One proof proceeds by showing that both a nilpotent operator and its adjoint have the same canonical form. In this note we show that although this result does not extend to infinite dimensional spaces, the weaker quasi-similarity version of it, together with the proof indicated above, still holds on any Hilbert space. This yields an affirmative answer to a question raised by P. Rosenthal in connection with the content of [3].

The canonical form exhibited provides positive evidence that the theory of Jordan models might be extended to cover operators of class \(C_0 \) of infinite multiplicity and indeed, considerable progress [2] has been made recently in this direction. Although the Jordan model for nilpotent operators on infinite dimensional Hilbert spaces is no longer unique, we single out a "canonical" model. A similar result has been obtained independently by Berkovici [1]. We conclude with an application of our results to extend to infinite dimensional spaces a theorem of Deddens and Fillmore [4] which characterizes reflexive operators on finite dimensional spaces.

We want to thank Lawrence Williams for pointing out an error in an earlier version of this note.

1. In this note, a nilpotent operator \(T \) will be called a Jordan operator if \(T = \bigoplus_{\alpha} T_{\alpha} \), where each \(T_{\alpha} \) operates on some \(C^{I_\alpha} \) for \(0 < I_\alpha < \infty \) by the Jordan one-cell matrix

Received by the editors October 24, 1975.

(1) Research partially supported by a grant from the National Science Foundation.

Copyright © 1977, American Mathematical Society

407
Recall that an operator X between Hilbert spaces H and K is said to be a quasi-affinity if $\ker X = (0)$ and $\text{clos}(XH) = K$. An operator A on H is said to be a quasi-affine transform of an operator B on K if there exists a quasi-affinity X such that $XA = BX$. Finally, two operators A and B are quasi-similar if each is a quasi-affine transform of the other. For further information on these concepts see the monograph [8, Chapter II, No. 3.2], or [7].

Our main result is given by the following

Theorem 1. Every nilpotent operator T is quasi-similar to a Jordan operator T_0.

Since for any Jordan operator T_0, the operators T_0 and T_0^* are obviously unitarily equivalent, we can infer

Theorem 2. If T is a nilpotent operator, then T and T^* are quasi-similar.

Before starting the proof of Theorem 1, we give an example to show that quasi-similarity cannot be replaced by similarity.

Let X be any compact quasi-affinity on an infinite dimensional Hilbert space H (for example, the Volterra operator on $L^2(0, 1)$) and consider the operator T defined by

$$
T = \begin{pmatrix}
0 & X & 0 \\
0 & 0 & I \\
0 & 0 & 0
\end{pmatrix}
on H \oplus H \oplus H.
$$

Clearly $T^3 = 0$ and thus T and T^* are quasi-similar by Theorem 2, but T and T^* are not similar. The proof of this is straightforward.

If S were an invertible operator on $H \oplus H \oplus H$ with matrix

$$
(2) \text{ The same example was found independently by H. Radjavi (see [3, §6]).}
$$
which satisfied $ST^* = TS$, then a simple computation shows that $B_2 = C_2 = C_1 = 0$, $C_0 = XB_1$ and $A_2 = B_1X^*$. Thus the operator

$$S_0 = \begin{pmatrix}
A_0 & B_0 & 0 \\
A_1 & B_1 & 0 \\
0 & 0 & 0
\end{pmatrix}$$

is a compact perturbation of S, and hence a Fredholm operator, which is contradicted by the fact that $\ker S_0 = (0) \oplus (0) \oplus H$ is not finite dimensional (cf. [5, Chapter 5]).

2. We start the proof of Theorem 1 with the following

Lemma 1. If T_0 and T_1 are two Jordan operators and T_0 is a quasi-affine transform of T_1, then T_0 and T_1 are quasi-similar.

Proof. The fact that T_0 is a quasi-affine transform of T_1 means that there exists a quasi-affinity X such that $XT_0 = T_1X$ and thus $T_0X^* = X^*T_1^*$. Since T_j is a Jordan operator, there exists a unitary operator U_j such that $T_j^* = U_j^*T_jU_j$ ($j = 0, 1$). Therefore, $T_0(U_0X^*U_1^*) = (U_0X^*U_1^*)T_1$, where $U_0X^*U_1^*$ is a quasi-affinity, and T_1 is also a quasi-affine transform of T_0. Consequently, T_0 and T_1 are quasi-similar.

Lemma 2. Any nilpotent operator T has a quasi-affine transform T_0 which is a Jordan operator.

Proof. Suppose that $T^n = 0$, $T^{n-1} \neq 0$ for some $n \geq 1$. If we set

\begin{align*}
\chi_j &= \ker T^j \ominus \ker T^{j-1} \quad \text{for } j = 1, 2, \ldots, n, \\
\nu_n &= \chi_n, \quad \nu_{n-1} = \chi_{n-1} \cap (T\nu_n)^1, \ldots, \\
\nu_1 &= \chi_1 \cap (T^{n-1}\nu_n + \cdots + T\nu_2)^1 \text{ and} \\
\mathcal{H}_0 &= (\nu_n \ominus \cdots \ominus \nu_n) \ominus (\nu_{n-1} \ominus \cdots \ominus \nu_{n-1}) \ominus \cdots \ominus (\nu_2 \ominus \nu_2) \ominus \nu_1 \\
&\quad \text{n times} \quad \text{(n - 1) times}
\end{align*}

we can define the bounded operators T_0 on \mathcal{H}_0 and $A: \mathcal{H}_0 \to H$ by the equations
\[
T_0(y_n^1 \oplus \cdots \oplus y_n^{r_n} \oplus \cdots \oplus y_2^1 \oplus y_2^2 \oplus y_2^4) = 0 \oplus y_n^1 \oplus \cdots \oplus y_{n-1}^1 \oplus \cdots \oplus 0 \oplus y_2^1 \oplus 0,
\]
and
\[
A(y_n^1 \oplus \cdots \oplus y_n^{r_n} \oplus \cdots \oplus y_2^1 \oplus y_2^2 \oplus y_2^4) = y_n^1 + \cdots + T^{n-1}y_n^1 + \cdots + y_2^4 + Ty_2^2 + y_2^1.
\]

It is easy to see that \(T_0\) is a Jordan operator and that \(AT_0 = TA\). Using the fact that
\[
(y_1 + \cdots + T^{n-1}y_n + y_2 + \cdots + T^{n-2}y_n + \cdots + y_k + \cdots + T^{n-k}y_n) - = \ker T^k,
\]
which is proved by induction on \(k\), we conclude that \(\text{clos}(A^*H_0) = H\). To complete the proof we must show that \(A\) is injective.

If \(A\) is not injective, there must exist \(y_k^j\) in \(V_j\), \(1 \leq j \leq n, 1 \leq k \leq j\), such that
\[
\sum_{j=1}^{n} \sum_{k=1}^{j} T^{k-1}y_{n-j+k} = 0 \quad \text{but} \quad \sum_{j=1}^{n} \sum_{k=1}^{j} \|y_{n-j+k}\| \neq 0.
\]

Let \(m\) be the smallest integer such that \(\sum_{k=1}^{m} \|y_{n-m+k}\| \neq 0\) and let \(p\) be the smallest integer such that \(y_{p}^n_{m+p} \neq 0\). Because we have
\[
\sum_{k=p}^{m} T^{k-1}y_{n-m+k} = -\sum_{j=m+1}^{n} \sum_{k=1}^{j} T^{k-1}y_{n-j+k} \quad \text{in ker } T^{n-m},
\]

it follows that \(y_{p}^n_{m+p} + \cdots + T^{m-p}y_{n}^m\) is in \(\ker T^{n-m+p-1}\). If we let \(P\) denote the orthogonal projection of \(H\) onto \(X_{n-m+p}\), then
\[
y_{n-m+p} + P(Ty_{n-m+p+1} + \cdots + T^{m-p}y_{n}^m) = P(y_{n-m+p} + \cdots + T^{m-p}y_{n}^m) = 0
\]
since \(X_{n-m+p}\) is orthogonal to \(T^{n-m+p-1}\) and \(y_{n-m+p}\) is in \(X_{n-m+p}\). Moreover, since \(y_{p}^n_{m+p}\) is orthogonal to \(T^{m-p}y_{n}^m + T^{m-p-1}y_{n-1} + \cdots + Ty_{n-p+m+1}\), it follows that
\[
y_{n-m+p} + P(Ty_{n-m+p+1} + \cdots + T^{m-p}y_{n}^m)
\]
and hence that \(y_{n-m+p} = 0\) which is a contradiction.

This completes the proof of the lemma.

3. Proof of Theorem 1. By applying Lemma 2 to \(T\) and \(T^*\) we obtain quasi-affinities \(X\) and \(X_+\) together with Jordan operators \(T_0\) and \(T_1\) such that
TX = XT₀, and T*X* = X*TX. Hence, X*T = T*X* and T is a quasi-affine transform of the Jordan operator T*₁. Thus T₀ is a quasi-affine transform of T*₁ and hence T₀ and T*₁ are quasi-similar by Lemma 1. Consequently, T is a quasi-affine transform of T₀ and we have established that T and T₀ are quasi-similar.

4. We make several remarks before continuing.

Since there exist quasi-nilpotent operators T such that ker T = (0) ≠ ker T* (for example, take T to be the weighted shift with weights 1, 1/2, 1/3, . . .), Theorem 2 is not valid for quasi-nilpotent operators.

As a consequence of Theorem 2, observe that Lemma 1 holds for all nilpotent operators, that is, if one nilpotent operator is a quasi-affine transform of another, then the two operators are actually quasi-similar.

Lastly, by using the Dunford-Riesz spectral decomposition Theorem 2 can be shown to hold for algebraic operators with real spectrum.

5. Theorem 1 provides a Jordan model for every nilpotent operator on Hilbert space. However, in contrast with the finite dimensional case, distinct Jordan models may be quasi-similar. Fortunately, the situation is not as complicated as it might first appear. We obtain a canonical choice and hence a complete set of quasi-similarity invariants for nilpotent operators after introducing some terminology.

For each integer m (1 ≤ m < ∞) and each infinite cardinal N, let Jₘ denote the Jordan operator defined by the m x m operator matrix

\[
\begin{pmatrix}
0 & I_N & 0 & \cdots & 0 \\
0 & 0 & I_N & \cdots \\
\vdots & \vdots & \ddots & \ddots \\
\vdots & \vdots & \ddots & \ddots & 0 \\
0 & \cdots & \cdots & \cdots & 0 \\
0 & \cdots & \cdots & \cdots & 0
\end{pmatrix}
\]

on \(mH = H \oplus \cdots \oplus H, \)

\(m \) times

where \(H \) is a Hilbert space of dimension \(N \).

Theorem 3. Every nilpotent operator is quasi-similar to a unique Jordan
model of the form $\bigoplus J_{m_1}^N \oplus N$, where $1 \leq m_1 < m_2 < \cdots < m_k < \infty$, $N_1 > N_2 > \cdots > N_k$, and N is a finite rank Jordan model $\bigoplus_{j=1}^n T_j$ on $\bigoplus_{j=1}^n C_j$ with $m_k < I_j$ for $j = 1, 2, \ldots, n$.

Proof. By Theorem 1 we need only consider Jordan models and easy arguments reduce the result to proving that $J_k^N \oplus J_{k-1}^N$ and J_k^N are quasi-similar for each $1 \leq k < \infty$ and infinite cardinal N. Moreover, since J_k^N and J_{k-1}^N are unitarily equivalent to J_k^N and J_{k-1}^N, respectively, it is sufficient to show that J_k^N is a quasi-affine transform of $J_k^N \oplus J_{k-1}^N$. Let H be a Hilbert space of dimension N and suppose A and B are operators on H which satisfy

1. $\ker A = \{0\}$,
2. $\text{clos}(AH) = H$, and
3. $\text{clos}\{Ax \oplus Bx: x \in H\} = H \oplus H$.

Then the identity

$$
\begin{pmatrix}
A & 0 \\
0 & A \\
B & 0 \\
0 & B
\end{pmatrix}
=
\begin{pmatrix}
J_k^N & 0 \\
0 & J_{k-1}^N
\end{pmatrix}
\begin{pmatrix}
A & 0 \\
0 & A \\
B & 0 \\
0 & B
\end{pmatrix}
$$

would complete the proof since (1), (2) and (3) imply that the matrix

$$
\begin{pmatrix}
A & 0 \\
0 & A \\
B & 0 \\
0 & B
\end{pmatrix}
$$

defines a quasi-affinity from kH to $(2k-1)H$.

There are various ways of exhibiting operators satisfying (1), (2) and (3). For example, let M_1 and M_2 denote multiplication by the characteristic functions of the first and second quarters Q_1 and Q_2 of the unit circle respectively, defined from the Hardy space H^2 to the L^2 spaces $L^2(Q_1)$ and $L^2(Q_2)$ respectively. If V_1, V_2, and V_3 are unitary maps from H onto $H^2 \otimes H$, $L^2(Q_1) \otimes H$, and $L^2(Q_2) \otimes H$, then $A = V_2^*(M_1 \otimes I_H)V_1$ and $B = V_3(M_2 \otimes I_H)V_1$ have the desired properties.

This theorem is probably indicative of the kind of uniqueness one can expect for Jordan models for C_0-operators of infinite multiplicity.
We conclude this section with a corollary which completes the classification of nilpotents up to quasi-similarity.

Corollary. If T_1 and T_2 are nilpotent operators on the Hilbert spaces H_1 and H_2, respectively, then T_1 and T_2 are quasi-similar if and only if
\[\dim \operatorname{clos} [T_1^l H_1] = \dim \operatorname{clos} [T_2^l H_2] \text{ for } l = 0, 1, \ldots. \]

Proof. If X is a quasi-affinity from H_1 to H_2 such that $T_2 X = X T_1$, then
\[\operatorname{clos} [X T_1^l H_1] = \operatorname{clos} [T_2^l X H_1] = \operatorname{clos} [T_2^l H_2] \]
which implies that $\dim \operatorname{clos} [T_1^l H_1] = \dim \operatorname{clos} [T_2^l H_2]$ for $l = 0, 1, 2, \ldots$. Conversely, an easy argument shows that the Jordan model given in the theorem is uniquely determined by these dimensions.

6. The results of this note enable us to extend a characterization of reflexive operator of Deddens and Fillmore [4] to infinite dimensional spaces. Recall that a linear subspace M of the Hilbert space H is said to be para-closed for the operator T on H if M is the range of some bounded operator on H. Let us call an operator T on H para-reflexive if any operator U on H leaving invariant the para-closed-invariant spaces of T is an entire function of T. The definition is one of the possible natural extensions to infinite dimensional spaces of the concept of reflexive operators on a finite dimensional space.

We begin this section with a result which may have some independent interest.

Proposition 1. Para-reflexivity is preserved under quasi-similarity.

Proof. If T and S are quasi-similar and S is para-reflexive we must show that T is also para-reflexive. If T is not algebraic, then by virtue of Theorem 2 [6], T is para-reflexive. Thus we can assume that T (and consequently S also) is algebraic. Suppose $TA = AS$, $BT = SB$ where A, B are quasi-affinities, and let Z be an operator leaving invariant every finite dimensional subspace invariant for T, that is, for every h in H there exists some polynomial p_h such that $Zh = p_h(T)h$. If we set $Z_0 = BZA$, then
\[Z_0 h_0 = BZA h_0 = B p_{A h_0} (T) A h_0 = B A p_{A h} (S) h_0 \]
is in BAH for every h_0 in H. Thus $X = (BA)^{-1} Z_0$ is, by the closed graph theorem, an operator on H such that $X h_0$ is in the finite dimensional space $\bigvee_{l > 0} S^l h_0$ for every h_0 in H. It follows that X leaves invariant every finite dimensional
subspace of H invariant under S. Thus, since S is para-reflexive, we infer from Corollary 2 [6] that $X = q(S)$, where q is a suitable polynomial. Consequently, $BZA = Z_0 = BAq(S) = Bq(T)A$ and hence $Z = q(T)$. Using Corollary 2 [6] once again, we conclude that T is para-reflexive.

A nilpotent operator on H is said to satisfy the Deddens-Fillmore condition [4], if either $\dim H < 1$ or its Jordan model $\bigoplus_{a \in A} J_a$ has the following property: If n_a denotes the order of the matrix of J_a ($a \in A$) and a_0 is chosen in A such that

\begin{equation}
\text{n}_{a_0} = \max \{ n_a | a \in A \},
\end{equation}

then

\begin{equation}
\max \{ n_a | a \in A \backslash \{a_0\} \} \geq n_{a_0} - 1.
\end{equation}

Proposition 2. A nilpotent operator T on H is para-reflexive if and only if it satisfies the Deddens-Fillmore condition.

Proof. By virtue of Proposition 1 and Theorem 1, it is sufficient to prove the statement in case $T = \bigoplus_{a \in A} J_a$. Exactly as in [4] we can prove that if this T does not fulfill the Deddens-Fillmore condition then T does not have property (A) or (B) of Corollary 2 [6]. Thus, by this corollary, T is not para-reflexive.

Let us now show the sufficiency of the Deddens-Fillmore condition. It is clear that we can assume that

\[T = J_0 \oplus J_1 \oplus \left(\bigoplus_{a \in B} J_a \right), \]

where the order n_i of J_i is the maximum occurring in formula (i) above ($i = 0, 1$); thus the order of any J_a ($a \in B$) is not greater than n_1. Now let Z be an operator leaving invariant all para-closed subspaces invariant for T. Then obviously

\[Z = Z_0 \oplus Z_1 \oplus \left(\bigoplus_{a \in B} Z_a \right) \]

and for any $h = h_0 \oplus h_1 \oplus (\bigoplus_{a \in B} h_a)$ there exists a polynomial p_h such that

\[Z h = p_h(T) h, \]

that is,

\[(Z_0 \oplus Z_1 \oplus Z_a)(h_0 \oplus h_1 \oplus h_a) = p_h(J_0 \oplus J_1 \oplus J_a)(h_0 \oplus h_1 \oplus h_a) \]

for every a in B. The above relation shows in particular that $Z_0 \oplus Z_1 \oplus Z_a$ leaves invariant every invariant subspace of $J_0 \oplus J_1 \oplus J_a$. By virtue of the Deddens-Fillmore theorem there exists a unique polynomial q_a of degree $\leq n_0$ such that
such that
\[Z_0 \oplus Z_1 \oplus Z_\alpha = q_\alpha(J_0 \oplus J_1 \oplus J_\alpha) = q_\alpha(J_0) \oplus q_\alpha(J_1) \oplus q_\alpha(J_\alpha), \]
for every \(\alpha \in B \). Thus for \(\alpha, \beta \in B \) we have
\[q_\alpha(J_0) = Z_0 = q_\beta(J_0). \]
Since \(J_0 \) is of order \(n_0 \) and \(q_\alpha, q_\beta \) are of degree \(\leq n_0 \), (3) implies \(q_\alpha = q_\beta \).
Consequently, there exists a polynomial \(q \) of degree \(\leq n_0 \) such that \(q_\alpha \equiv q \) for every \(\alpha \in B \). From (2) we infer
\[Z = Z_0 \oplus Z_1 \oplus \left(\bigoplus_{\alpha \in B} Z_\alpha \right) = q(J_0) \oplus q(J_1) \oplus \left(\bigoplus_{\alpha \in B} q(J_\alpha) \right) = q(T) \]
which finishes our proof.

Theorem 4. An operator \(T \) is para-reflexive if and only if either it is nonalgebraic or it is algebraic and the nilpotents corresponding to the points of the spectrum of \(T \) satisfy the Deddens-Fillmore condition.

Proof. This follows at once from Proposition 2 above, the Dunford-Riesz spectral decomposition of an algebraic operator, and Corollary 1.

REFERENCES

INSTITUTUL NAȚIONAL PENTRU CREATIE ȘTIINȚIFICĂ ȘI TEHNICA, BUCUREȘTI, ROMANIA

DEPARTMENT OF MATHEMATICS, STATE UNIVERSITY OF NEW YORK, STONY BROOK, NEW YORK 11794

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF BUCHAREST, BUCHAREST, ROMANIA