Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A minimax formula for dual $ B\sp*$-algebras


Author: Pak Ken Wong
Journal: Trans. Amer. Math. Soc. 224 (1976), 281-298
MSC: Primary 46K05
DOI: https://doi.org/10.1090/S0002-9947-1976-0428047-0
MathSciNet review: 0428047
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let A be a dual $ {B^\ast}$-algebra. We give a minimax formula for the positive elements in A. By using this formula and some of its consequent results, we introduce and study the symmetric norms and symmetrically-normed ideals in A.


References [Enhancements On Off] (What's this?)

  • [1] B. A. Barnes, A generalized Fredholm theory for certain maps in the regular representations of an algebra, Canad. J. Math. 20 (1968), 495-504. MR 38 #534. MR 0232208 (38:534)
  • [2] N. Dunford and J. T. Schwartz, Linear operators. II: Spectral theory. Self adjoint operators in Hilbert space, Interscience, New York, 1963. MR 32 #6181. MR 0188745 (32:6181)
  • [3] I. C. Gohberg and M. G. Kreĭn, Introduction to the theory of linear nonselfadjoint operators, ``Nauka", Moscow, 1965; English transl., Transl. Math. Monographs, vol. 18, Amer. Math. Soc., Providence, R. I., 1969. MR 36 #3137; 39 #7447. MR 0246142 (39:7447)
  • [4] A. Horn, On the singular values of a product of completely continuous operators, Proc. Nat. Acad. Sci. U.S.A. 36 (1950), 374-375. MR 13, 565. MR 0045316 (13:565a)
  • [5] T. Ogasawara and K. Yoshinaga, Weakly completely continuous Banach $ ^\ast$-algebras, J. Sci. Hiroshima Univ. Ser. A 18 (1954), 15-36. MR 16, 1126. MR 0070068 (16:1126d)
  • [6] C. E. Rickart, General theory of Banach algebras, University Series in Higher Math., Van Nostrand, Princeton, N. J., 1960. MR 22 #5903. MR 0115101 (22:5903)
  • [7] S. Sakai, $ {C^\ast}$-algebras and $ {W^\ast}$-algebras, Ergebnisse Math. Grenzgebiete, Band 60, Springer-Verlag, Berlin, 1971. MR 0442701 (56:1082)
  • [8] R. Schatten, Norm ideals of completely continuous operators, Ergebnisse Math. Grenzgebiete, N.F., Heft 27, Springer-Verlag, Berlin, 1960. MR 22 #9878. MR 0119112 (22:9878)
  • [9] P. K. Wong, Modular annihilator $ {A^\ast}$-algebras, Pacific J. Math. 37 (1971), 825-834. MR 46 #4213. MR 0305083 (46:4213)
  • [10] -, On the Arens products and certain Banach algebras, Trans. Amer. Math. Soc. 180 (1973), 437-448. MR 47 #7431. MR 0318885 (47:7431)
  • [11] -, The p-class in a dual $ {B^\ast}$-algebra, Trans. Amer. Math. Soc. 200 (1974), 355-368. MR 50 #10837. MR 0358371 (50:10837)
  • [12] -, On certain subalgebras of a dual $ {B^\ast}$-algebra, J. Australian Math. Soc. (to appear).

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46K05

Retrieve articles in all journals with MSC: 46K05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1976-0428047-0
Keywords: Dual algebra, $ {A^\ast}$-algebra, $ {B^\ast}$-algebra, Hermitian minimal idempotent, symmetrically-normed ideal, symmetric norming function
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society