Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Continuously perfectly normal spaces and some generalizations


Author: Gary Gruenhage
Journal: Trans. Amer. Math. Soc. 224 (1976), 323-338
MSC: Primary 54D15; Secondary 54E35
DOI: https://doi.org/10.1090/S0002-9947-1976-0428275-4
MathSciNet review: 0428275
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this work we continue the study of continuously perfectly normal, continuously normal, and continuously completely regular spaces which was begun by Phillip Zenor. Among other results, we prove that separable continuously completely regular spaces are metrizable, and provide an example of a nonmetrizable continuously perfectly normal space.


References [Enhancements On Off] (What's this?)

  • [1] C. J. R. Borges, On stratifiable spaces, Pacific J. Math. 17 (1966), 1-16. MR 32 #6409. MR 0188982 (32:6409)
  • [2] -, Four generalizations of stratifiable spaces, Proc. Prague Topology Sympos., 1971 (to appear).
  • [3] C. J. R. Borges, On metrizability of topological spaces, Canad. J. Math. 20 (1968), 795-804. MR 37 #6910. MR 0231355 (37:6910)
  • [4] G. Gruenhage, Infinite games and generalizations of first countable spaces, General Topology and Appl. (to appear). MR 0413049 (54:1170)
  • [5] J. Kelley, General topology, Van Nostrand, Princeton, N. J., 1955. MR 16, 1136. MR 0070144 (16:1136c)
  • [6] K. Kuratowski, Topology, Vol. 1, new ed., rev. and aug., Academic Press, New York; PWN, Warsaw, 1966. MR 36 #840. MR 0217751 (36:840)
  • [7] L. F. McAuley, A relation between perfect separability, completeness, and normality and semi-metric spaces, Pacific J. Math. 6 (1956), 315-326. MR 18, 325. MR 0080907 (18:325c)
  • [8] E. A. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc. 17 (1951), 152-182. MR 13, 54. MR 0042109 (13:54f)
  • [9] -, A quintuple quotient quest, General Topology and Appl. 2 (1972), 91-138. MR 46 #8156. MR 0309045 (46:8156)
  • [10] J. Nagata, On a necessary and sufficient condition of metrizability, J.Inst. Polytech. Osaka City Univ. Ser. A Math. 1 (1950), 93-100. MR 13, 264. MR 0043448 (13:264e)
  • [11] R. C. Olsen, Bi-quotient maps, countably bi-sequential spaces, and related problems, Doctoral Dissertation, University of Washington, Seattle, Washington.
  • [12] F. Siwiec, Sequence-covering and countably bi-quotient mappings, General Topology and Appl. 1 (1971),143-154. MR 44 #5933. MR 0288737 (44:5933)
  • [13] R. M. Stephenson, Jr., Discrete subsets of perfectly normal spaces, Proc. Amer. Math. Soc. 34 (1972), 605-608. MR 45 #5944. MR 0296885 (45:5944)
  • [14] H. Tamano and J. E. Vaughn, Paracompactness and elastic spaces, Proc. Amer. Math. Soc. 28 (1971), 299-303. MR 42 #8446. MR 0273568 (42:8446)
  • [15] P. Zenor, A metrization theorem, Colloq. Math. 27 (1973), 241-243. MR 48 #12475. MR 0334156 (48:12475)
  • [16] -, Some continuous separation axioms, Fund. Math. (to appear). MR 0394561 (52:15362)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 54D15, 54E35

Retrieve articles in all journals with MSC: 54D15, 54E35


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1976-0428275-4
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society