Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Duality theory for locally compact groups with precompact conjugacy classes. II. The dual space


Author: Terje Sund
Journal: Trans. Amer. Math. Soc. 224 (1976), 313-321
MSC: Primary 22D35
DOI: https://doi.org/10.1090/S0002-9947-1976-0439982-1
MathSciNet review: 0439982
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The present paper is concerned with the dual space Ĝ consisting of all unitary equivalence classes of continuous irreducible unitary representations of separable $ {[FC]^ - }$ groups (i.e. groups with precompact conjugacy classes). The main purpose of the paper is to extend certain results from the duality theory of abelian groups and [Z] groups to the larger class of $ {[FC]^ - }$ groups. In addition, we deal briefly with square-integrability for representations of $ {[FC]^ - }$ groups. Most of our results are proved for type I groups. Our key result is that Ĝ may be written as a disjoint union of abelian topological $ {T_4}$ groups, which are open in Ĝ.


References [Enhancements On Off] (What's this?)

  • [1] L. Auslander and C. C. Moore, Unitary representations of solvable Lie groups, Mem. Amer. Math. Soc. No. 62 (1966), 199 pp. MR 34 #7723. MR 0207910 (34:7723)
  • [2] L. Baggett, A separable group having a discrete dual space is compact, J. Functional Analysis 10 (1972),131-148. MR 49 #10816. MR 0346090 (49:10816)
  • [3] L. Baggett and A. Kleppner, Multiplier representations of abelian groups, J. Functional Analysis 14 (1973), 299-324. MR 0364537 (51:791)
  • [4] J. Dixmier, Les $ {C^\ast}$-algèbres et leurs représentations, Gauthier-Villars, Paris, 1964. MR 30 #1404. MR 0171173 (30:1404)
  • [5] K. Fan, On local connectedness of locally compact Abelian groups, Math. Ann. 187 (1970), 114-116. MR 41 #7022. MR 0262414 (41:7022)
  • [6] J. M. G. Fell, A new proof that nilpotent groups are CCR, Proc. Amer. Math. Soc. 13 (1962), 93-99. MR 24 #A3238. MR 0133404 (24:A3238)
  • [7] -, Weak containment and induced representations of groups, Canad. J. Math. 14 (1962), 237-268. MR 27 #242. MR 0150241 (27:242)
  • [8] J. G. Glimm, Locally compact transformation groups, Trans. Amer. Math. Soc. 101 (1961), 124-138. MR 25 #146. MR 0136681 (25:146)
  • [9] S. Grosser, R. Mosak and M. Moskowitz, Duality and harmonic analysis on central topological groups. I, II, Nederl. Akad. Wetensch. Proc. Ser. A 76 = Indag. Math. 35 (1973), 65-77, 78-91. MR 49 #5225a, b. MR 0340470 (49:5225a)
  • [10] S. Grosser and M. Moskowitz, Compactness conditions in topological groups, J. Reine Angew. Math. 246 (1971), 1-40. MR 44 #1766. MR 0284541 (44:1766)
  • [11] E. Hewitt and K. A. Ross, Abstract harmonic analysis, Vol. I, Grundlehren math. Wiss., Band 115, Springer-Verlag, Berlin; Academic Press, New York, 1963. MR 28 #158. MR 551496 (81k:43001)
  • [12] E. Kaniuth, Zur harmonischen Analyse klassenkompakter Gruppen, Math. Z. 110 (1969), 297-305. MR 41 #8591. MR 0263992 (41:8591)
  • [13] E. Kaniuth and G. Schlichting, Zur harmonischen Analyse klassenkompakter Gruppen. II, Invent. Math. 10 (1970), 332-345. MR 47 #5521. MR 0316973 (47:5521)
  • [14] A. Kleppner and R. L. Lipsman, The Plancherel formula for group extensions. I, Ann. Sci. École Norm. Sup. (4) 5 (1972), 459-516. MR 49 #7387. MR 0342641 (49:7387)
  • [15] H. Leptin, Zur harmonischen Analyse klassenkompakter Gruppen, Invent. Math. 5 (1968), 249-254. MR 38 #2257. MR 0233936 (38:2257)
  • [16] J. L. Liukkonen, Dual spaces of groups with precompact conjugacy classes, Trans. Amer. Math. Soc. 180 (1973), 85-108. MR 47 #6937. MR 0318390 (47:6937)
  • [17] G. W. Mackey, Unitary representations of group extensions. I, Acta Math. 99 (1958), 265-311. MR 20 #4789. MR 0098328 (20:4789)
  • [18] R. D. Mosak, The $ {L^1}$- and $ {C^\ast}$-algebras of $ {[FIA]_{\bar B}}$ groups, and their representations, Trans. Amer. Math. Soc. 163 (1972), 277-310. MR 45 #2096. MR 0293016 (45:2096)
  • [19] M. Moskowitz, Homological algebra in locally compact abelian groups, Trans. Amer. Math. Soc. 127 (1967), 361-404. MR 35 #5861. MR 0215016 (35:5861)
  • [20] L. S. Pontryagin, Continuous groups, 2nd ed., GITTL, Moscow, 1954; English transl., Topological groups, Gordon and Breach, New York, 1966. MR 17, 171; 34 #1439. MR 0071705 (17:171f)
  • [21] L. C. Robertson, A note on the structure of Moore groups, Bull. Amer. Math. Soc. 75 (1969), 594-599. MR 39 #7027. MR 0245721 (39:7027)
  • [22] I. Schochetman, Topology and the duals of certain locally compact groups, Trans. Amer. Math. Soc. 150 (1970), 477-489. MR 42 #422. MR 0265513 (42:422)
  • [23] T. Sund, Duality theory for locally compact groups with precompact conjugacy classes. I: The character space, Trans. Amer. Math. Soc. 211 (1975), 185-202. MR 0387490 (52:8332)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 22D35

Retrieve articles in all journals with MSC: 22D35


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1976-0439982-1
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society