WEIERSTRASS NORMAL FORMS AND INVARIANTS OF ELLIPTIC-surfaces

BY

ARNOLD KAS

Abstract. Let \(\pi: S \to B \) be an elliptic surface with a section \(\sigma: B \to S \). Let \(L^1 \to B \) be the normal bundle of \(\sigma(B) \) in \(S \), and let \(W = \mathbb{P}(L^2 \oplus L^3 \oplus 1) \) be a \(\mathbb{P}^2 \)-bundle over \(B \). Let \(S^* \) be the surface obtained from \(S \) by contracting those components of fibres of \(S \) which do not intersect \(\sigma(B) \). Then \(S^* \) may be imbedded in \(W \) and defined by a "Weierstrass equation":

\[
y^2z = x^3 - g_2xz^2 - g_3z^3
\]

where \(g_2 \in H^0(B, \mathcal{O}(L^2)) \) and \(g_3 \in H^0(B, \mathcal{O}(L^3)) \). The only singularities (if any) of \(S^* \) are rational double points. The triples \((L, g_2, g_3) \) form a set of invariants for elliptic surfaces with sections, and a complete set of invariants is given by \(\{(L, g_2, g_3)\}/G \) where \(G \cong \mathbb{C}^* \times \text{Aut}(B) \).

An elliptic surface is a morphism \(\pi: S \to B \) where \(S \) is a compact complex analytic surface, \(B \) is a compact Riemann surface, and such that for all but finitely many points \(t \in B \), \(C_t = \pi^{-1}(t) \) is a nonsingular elliptic curve in \(S \). Throughout this paper we will assume the existence of a section \(\sigma: B \to S (\pi \circ \sigma = \text{id}_B) \). In this case, it follows that \(S \) is algebraic [3].

\(\pi: S \to B \) will be called a minimal elliptic surface if no fibre of \(S \) contains an exceptional curve of the first kind. It is possible for \(\pi: S \to B \) to be a minimal elliptic surface while \(S \) is not a minimal surface (rational elliptic surface). If \(\pi: S \to B \) and \(\phi: F \to B \) are elliptic surfaces with sections \(\sigma: B \to S \), \(\tau: B \to F \), then a birational mapping is a biholomorphic map \(f: \pi^{-1}(B') \to \phi^{-1}(B') \) where \(B' \subset B \) is a Zariski open set, satisfying: \(\phi \cdot f = \pi \) and \(f \cdot \sigma = \tau \). Then we have the following

Theorem. If \(F \) is a minimal elliptic surface, then \(f \) extends to a holomorphic mapping \(\hat{f}: S \to F \) [3].

It is not hard to prove that if \(\pi: S \to B \) is any elliptic surface (not necessarily containing a section), then the exceptional curves lying in any fibre of \(S \) are disjoint. It follows that there exists a unique minimal model in any birational class of elliptic surfaces [3].
Now let \(\pi: S \to B \) be a minimal elliptic surface. If \(K(S) \) and \(K(B) \) denote the function fields of \(S \) and of \(B \) respectively, then \(K(S) \), as an algebraic function field in one variable over \(K(B) \), is of genus 1, and contains a rational point corresponding to the section. It follows that \(S \) is birationally equivalent to a (possibly singular) elliptic surface \(\pi': S' \to B \) given by a Weierstrass equation. That is, \(S' \subset B \times \mathbb{P}^2 \) is defined by an equation of the form:

\[
y^2z = x^3 - g_2xz^2 - g_3z^3
\]

where \(g_2, g_3 \) in \(K(B) \) are uniquely determined up to the transformation:

\[
(g_2, g_3) \to (h^4g_2, h^6g_3), \quad h \in K(B).
\]

In this paper, we wish to describe a (possibly singular) elliptic surface: \(\pi^*: S^* \to B \) closely related to the Weierstrass surface \(S' \), such that \(S^* \) satisfies:

(i) The only singularities of \(S^* \) are rational double points;

(ii) \(S \) is the minimal resolution of \(S^* \).

Abstractly, \(S^* \) is obtained from \(S \) by contracting those curves in the singular fibres of \(S \) which do not meet the section. We wish to describe a Weierstrass-type equation for \(S^* \).

Let \(A \) be the unique divisor on \(B \) such that if:

\[
div (g_2) + 4A = \sum_{P \in B} n_P P,
\]

\[
div (g_3) + 6A = \sum_{P \in B} m_P P
\]

then

(i) \(n_p \geq 0, m_p \geq 0 \) for all \(P \in B \),

(ii) \(\min(3n_p, 2m_p) < 12 \) for all \(P \in B \),

i.e., either \(n_p < 4 \) or \(m_p < 6 \). If \((g_2, g_3) \) is replaced by \((h^4g_2, h^6g_3) \), then \(A \) is replaced by \(A - \text{div}(h) \). Thus the divisor class of \(A \) is uniquely determined by the elliptic surface \(S \). Let \(L = [A] \) be the line bundle of \(A \), and let \((l_{ij}) \) be a system of transition functions for \(L \) with respect to some covering \(\{U_i\} \) of \(B \).

The meromorphic functions \(g_2, g_3 \) determine sections:

\[
g_2^* \in H^0(B, \mathcal{O}_B(4L)), \quad g_3^* \in H^0(B, \mathcal{O}_B(6L)).
\]

\((g_2^*, g_3^*) \) are determined by \(S \) up to the transformation: \((g_2^*, g_3^*) \to (\lambda^4g_2^*, \lambda^6g_3^*), \lambda \in \mathbb{C}^* \). \(g_2^* \) and \(g_3^* \) may be described by systems of holomorphic functions \((g_{2i}^*) \) and \((g_{3i}^*) \) defined on \(U_i \) satisfying

\[
g_{2i}^* = l_{ij}^4 g_{2j}^*, \quad g_{3i}^* = l_{ij}^6 g_{3j}^*,
\]

on \(U_i \cap U_j \).

Let \(W = 2L \oplus 3L \oplus 1 \). Let \(S^* \subset P(W) \) be such that \(S^* \) is defined over each piece \(U_i \) by the equation:

\[
y_i^2z_i = x_i^3 - g_{2i}^*x_i^2z_i - g_{3i}^*z_i^3
\]
where \((x_i:y_j:z_l)\) are fibre homogeneous coordinates for \(P(W)\) over \(U_l\) satisfying
\[x_i = l_{ij}^2 x_j, \quad y_i = l_{ij}^3 y_j, \quad z_i = z_j,\]
over \(U_i \cap U_j\).

If \(B' = B - \text{supp } (A)\), then it is clear that \(S^*|_{B'} \cong S'|_{B'}\) and therefore \(S^*\) is birationally equivalent to \(S\). We will prove that the only singularities of \(S^*\) are rational double points. Notice that we have:
\[
\min(3 \text{ ord}_P (g_2^*), 2 \text{ ord}_P (g_3^*)) < 12
\]
at every point \(P \in B\).

Lemma 1. Consider the isolated singularity

\[y^2 = x^3 - \alpha t^n x - \beta t^m, \quad n > 0, m > 1, \]
in \(\mathbb{C}^2(x,y,t)\) where \(\alpha = \alpha(t), \beta = \beta(t), \alpha(0) \neq 0, \beta(0) \neq 0,\) and where we assume that \(\Delta = 4\alpha^3 t^{3n} - 27\beta^2 t^{2m}\) is not identically zero. Then the above singularity at the origin is a rational double point if and only if \(\min(3n, 2m) < 12\).

Proof. We can resolve the singularity explicitly as in [2, p. 81]. We give a table here which describes the graph of the minimal resolution in case \(n < 4\) or \(m < 6\). We follow the notation of [1], namely:

\[
\begin{align*}
A_n & : \xrightarrow{-} \cdots \xrightarrow{-} \quad (n \text{ vertices}) \\
D_n & : \xrightarrow{-} \cdots \xrightarrow{-} \quad (n \text{ vertices}) \\
E_n & : \xrightarrow{-} \cdots \xrightarrow{-} \quad (n \text{ vertices}, n = 6, 7, \text{ or } 8)
\end{align*}
\]

here each vertex represents a nonsingular rational curve with self-intersection \(-2\).

Resolution of \(y^2 = x^3 - \alpha t^n x - \beta t^m\)

| \(n\) | \(m\) | \\
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(\geq 3)</td>
<td>4</td>
<td>(E_6)</td>
</tr>
<tr>
<td>2</td>
<td>(\geq 3)</td>
<td>(D_4)</td>
</tr>
<tr>
<td>3</td>
<td>(\geq 2)</td>
<td>(D_4)</td>
</tr>
<tr>
<td>3</td>
<td>(\geq 5)</td>
<td>(E_7)</td>
</tr>
<tr>
<td>(\geq 4)</td>
<td>5</td>
<td>(E_8)</td>
</tr>
<tr>
<td>(\geq 2)</td>
<td>2</td>
<td>(A_2)</td>
</tr>
<tr>
<td>1</td>
<td>(\geq 2)</td>
<td>(A_1)</td>
</tr>
</tbody>
</table>

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
As an illustration, we will carry out the resolution of \(y^2 = x^3 - \alpha t^n x - \beta t^5 \), \(n \geq 4 \). After blowing up the origin in the \((x, t)\) plane we get the diagram:

\[
\begin{align*}
(1) \quad \Gamma_1 & \quad r_1^1 = -1 \\
& \quad m_1 = 3 \\
\end{align*}
\]

where \(\Gamma_1 \) is the exceptional curve,

\[
\begin{align*}
is the proper transform of \(x^3 - \alpha t^n x - \beta t^5 = 0 \) which has a simple cusp, and \(m_1 \) is the multiplicity of \(\Gamma_1 \) as a component of the divisor of \(x^3 - \alpha t^n x - \beta t^5 \). After blowing up the cusp, we get the diagram:

\[
\begin{align*}
(2) \quad \Gamma_1 & \quad r_1^2 = -2 \\
& \quad m_2 = 3 \\
& \quad r_2 = -1 \\
& \quad m_3 = 5 \\
\end{align*}
\]

Here \(\Gamma_1 \) represents the proper transform of the \(\Gamma_1 \) of diagram (1). Now, blow up the triple intersection:

\[
\begin{align*}
(3) \quad \Gamma_1 & \quad r_1^3 = -3 \\
& \quad m_1 = 3 \\
& \quad r_2^3 = -2 \\
& \quad m_3 = 5 \\
& \quad r_3^3 = -1 \\
& \quad m_4 = 9 \\
\end{align*}
\]

Again blow up the triple intersection:

\[
\begin{align*}
(4) \quad \Gamma_1 & \quad r_1^4 = -3 \\
& \quad m_1 = 3 \\
& \quad r_2^4 = -3 \\
& \quad m_2 = 5 \\
& \quad r_3^4 = -2 \\
& \quad m_3 = 9 \\
& \quad r_4^4 = -1 \\
& \quad m_4 = 15 \\
\end{align*}
\]

Now blow up each double point. This is to insure that the curves \(\Gamma_i \) with \(m_i \) odd are disjoint from one another and from \(\Gamma \).
The resolution is then the double covering of diagram (5) ramified over the curves $\Gamma_1, \Gamma_2, \Gamma_3, \Gamma_4$, and \mathcal{R}. This is clearly the graph E_8.

By tautness of rational double points [1], it follows that $y^2 = x^3 - \alpha t^n x - \beta t^m$ is a rational double point if $\min(3n, 2m) < 12$.

Assume now that $n = 4k + n_1$, $m = 6k + m_1$ where $k > 0$, $\min(3n_1, 2m_1) < 12$. Then the graph of the resolution of $y^2 = x^3 - t^n \alpha x - t^m$ is one of the following:

where Σ_{n_1, m_1} is taken from the table above;
where E is a rational curve with one cusp, and $E^2 = -1$.

In any case, the singularity is not a rational double point. This completes the proof of Lemma 1.

We now consider the singularities of S^* corresponding to poles of j. Thus we consider the surface defined in $C^2 \times \{|r| < \varepsilon\}$ by $y^2 = x^3 - \alpha(t)x - \beta(t)$, with discriminant $\Delta = 4\alpha^3 - 27\beta^2$ and invariant $j = 4\alpha^3/\Delta$. We now assume that j has a pole of order $r > 0$ at $t = 0$. If we set $\alpha(t) = t^n\alpha(t)$, $\beta(t) = t^m\beta(t)$ with $\alpha(0) \neq 0$, and $\beta(0) \neq 0$, then we must have $(n,m) = (2k, 3k)$ for some $k \geq 0$. Notice that after an analytic change of coordinates, the above equation may be transformed to

$$y^2 = (x - t^k)(x^2 - t^{r+2k}y), \quad \gamma = \gamma(t), \gamma(0) \neq 0.$$

Here again, this singularity may be resolved explicitly by the methods of [2]. We get the following result:

Lemma 2. The singularity $y^2 = (x - t^k)(x^2 - t^{r+2k}y)$ is not a rational double point if $k > 1$. It is a rational double point of type D_{r+4} if $k = 1$, and of type A_{r-1} if $k = 0, r > 1$.

To be more specific, if $k > 1$ is even, then the graph of the resolution is:

```
-2 -2 ...
      1
-2 -2 -3 ...
      2
-2 -2 ...
```

If $k > 1$ is odd, the graph is:

```
-2 -2 ...
      1
-2 -2 -3 ...
      2
-2 -2 ...
```

If $k = 0$, the corresponding fibre is of type I_r, while if $k = 1$, the fibre is of type I_r^*. It is clear from Lemmas 1 and 2 and our construction of the elliptic surface S^* that the only singularities of S^* are rational double points.
To each point $a \in B$, let C_a^* be the fibre of S^* over a. If S is the minimal resolution of S^*, then the fibre of S over a is of the form:

$$C_a = C_{a0} + \sum_{j \geq 1} n_j C_{aj}$$

where C_{a0} is the proper transform of C_a^* and where $\bigcup_{j \geq 1} C_{aj}$ (if nonempty) form the minimal resolution of a rational double point. Thus we have $C_{aj}^2 = -2$, $K \cdot C_{aj} = 0$ ($j \geq 1$). Since C_a is a fibre of an elliptic surface, $K \cdot C_a = 0$. It follows that $K \cdot C_{a0} = 0$. Thus C_{a0} is not an exceptional curve of the first kind. We may conclude that S is a minimal elliptic surface. We sum up our results.

Theorem 1. Let $\pi: S \to B$ be a minimal elliptic surface which admits a section. Then there exists a line bundle L on B and sections $g_2 \in H^0(B, \mathcal{O}_B(4L))$, $g_3 \in H^0(B, \mathcal{O}_B(6L))$ such that S is the minimal resolution of the surface $S^* \subset \mathbb{P}(2L \oplus 3L \oplus 1)$ defined by the “Weierstrass equation”

$$y^2z = x^3 - g_2xz - g_3z^3.$$

The only singularities of S^* are rational double points. L is uniquely determined by the projection π. In fact L^{-1} is the normal bundle of any section $s(B)$ in L, and we have $\deg(L) = p_g - q + 1$. The pair (g_2, g_3) are uniquely determined up to the transformation $(g_2, g_3) \mapsto (\lambda g_2, \lambda^6 g_3)$, $\lambda \in \mathbb{C}^*$. The pair (g_2, g_3) satisfy

(i) $\Delta = 4g_2^3 - 27g_3^2 \neq 0$.

(ii) For every $t \in B$, $\min(3 \ord_t(g_2), 2 \ord_t(g_3)) < 12$.

We remark that if S is not a $K3$ surface, then the projection $\pi: S \to B$ is uniquely determined up to an automorphism of B. In fact, if $q > 0$, the Albanese mapping of S factors through the projection π and the Jacobian mapping of B. If $q = 0$, then the projection π is determined by the linear system $|mK|$, where $m \gg 0$ if S is not a rational surface, and $m < 0$ if S is a rational elliptic surface.

Let $Y(n, B) = \{L, g_2, g_3\}$ where L is a line bundle over B with $\deg(L) = n$, $g_2 \in H^0(B, \mathcal{O}_B(4L))$, $g_3 \in H^0(B, \mathcal{O}_B(6L))$ and satisfying:

(i) $\Delta = 4g_2^3 - 27g_3^2 \neq 0$.

(ii) For every $t \in B$, $\min(3 \ord_t(g_2), 2 \ord_t(g_3)) < 12$.

Let $X(n, B) = Y(n, B)/\mathbb{C}^*$ where \mathbb{C}^* acts on $Y(n, B)$ by $(L, g_2, g_3) \mapsto (L, \lambda^4 g_2, \lambda^6 g_3)$. There is a natural action of $\text{Aut}(B)$ on $X(n, B)$.

Theorem 2. There is a 1-1 correspondence between elliptic surfaces $\pi: S \to B$ which admit a section satisfying $p_g - q + 1 = n$, and the set $X(n, B)$. The set of elliptic surfaces S over B (without specifying a projection) which admit a section satisfying $p_g - q + 1 = n$ is in 1-1 correspondence with $X(n, B)/\text{Aut}(B)$, provid-
ed that we exclude the case of elliptic $K3$ surfaces, i.e., $n = 2, B = P^1$.

Example. Elliptic surfaces over P^1. There is a unique line bundle L_n of degree n on P^1. We may identify $H^0(P^1, 0, (m))$ with $\mathcal{O}_m = \text{the set of polynomials } P(i) \text{ of degree } \leq m$. Then $Y(n, P^1) = \{(P(i), Q(i)) \in \mathcal{O}_{4n} \times \mathcal{O}_{6n}\}$ satisfying:

(i) $4P(i)^3 - 27Q(i)^2 \neq 0$.

(ii) $\text{min}(3 \text{ ord}_a P, 2 \text{ ord}_a Q) < 12$ for every $a \in \mathbb{C}$.

(iii) $\text{min}(12n - 3 \text{ deg } P, 12n - 2 \text{ deg } Q) < 12$.

\mathbb{C}^* acts on $Y(n, P^1)$ by $(P, Q) \mapsto (\lambda^4 P, \lambda^6 Q)$. $SL(2, \mathbb{C})/\pm 1 = \text{Aut } (P^1)$ acts on $Y(n, P^1)$ by

$$(P, Q) \mapsto \left((ct + d)^4 P\left(\frac{at + b}{ct + d}\right), (ct + d)^6 Q\left(\frac{at + b}{ct + d}\right)\right).$$

References

Department of Mathematics, Oregon State University, Corvallis, Oregon 97331