Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Homomorphisms of integral domains of characteristic zero


Authors: E. Fried and J. Sichler
Journal: Trans. Amer. Math. Soc. 225 (1977), 163-182
MSC: Primary 18B15; Secondary 16A02
DOI: https://doi.org/10.1090/S0002-9947-1977-0422382-9
MathSciNet review: 0422382
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Every category of universal algebras is isomorphic to a full subcategory of the category of all integral domains of characteristic zero and all their 1-preserving homomorphisms. Consequently, every monoid is isomorphic to the monoid of all 1-preserving endomorphisms of an integral domain of characteristic zero.


References [Enhancements On Off] (What's this?)

  • [1] E. Fried and J. Sichler, Homomorphisms of commutative rings with unit element, Pacific J. Math. 45 (1973), 485-491. MR 49 #270. MR 0335489 (49:270)
  • [2] G. Grätzer and J. Sichler, On the endomorphism semigroup (and category) of bounded lattices, Pacific J. Math. 35 (1970), 639-647. MR 43 #3175. MR 0277442 (43:3175)
  • [3] Z. Hedrlín, On endomorphisms of graphs and their homomorphic images, Proof Techniques in Graph Theory (Proc. 2nd Ann Arbor Graph Theory Conf., 1968), Academic Press, New York, 1969, pp. 73-85. MR 41 #1568. MR 0256913 (41:1568)
  • [4] Z. Hedrlín and J. Lambek, How comprehensive is the category of semigroups?, J. Algebra 11 (1969), 195-212. MR 38 #5892. MR 0237611 (38:5892)
  • [5] Z. Hedrlín and E. Mendelsohn, The category of graphs with a given subgraph-with applications to topology and algebra, Canad. J. Math. 21 (1969), 1506-1517. MR 41 #5232. MR 0260608 (41:5232)
  • [6] Z. Hedrlín and A. Pultr, On full embeddings of categories of algebras, Illinois J. Math. 10 (1966), 392-406. MR 33 #85. MR 0191858 (33:85)
  • [7] Z. Hedrlín and J. Sichler, Any boundable binding category contains a proper class of mutually disjoint copies of itself, Algebra Universalis 1 (1971), no. 1, 97-103. MR 44 #2798. MR 0285580 (44:2798)
  • [8] L. Kučera and A. Pultr, Non-algebraic concrete categories, J. Pure Appl. Algebra 3 (1972), 95-102. MR 49 #375. MR 0335594 (49:375)
  • [9] A. Pultr, Eine Bemerkung über volle Einbettungen von Kategorien von Algebren, Math. Ann. 178 (1968), 78-82. MR 37 #6352. MR 0230794 (37:6352)
  • [10] J. Sichler, Testing categories and strong universality, Canad. J. Math. 25 (1973), 370-385. MR 47 #6805. MR 0318258 (47:6805)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 18B15, 16A02

Retrieve articles in all journals with MSC: 18B15, 16A02


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1977-0422382-9
Keywords: Integral domain, universal algebra, homomorphism, concrete category, full embedding, binding category
Article copyright: © Copyright 1977 American Mathematical Society

American Mathematical Society