Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On bounded univalent functions whose ranges contain a fixed disk


Author: Roger W. Barnard
Journal: Trans. Amer. Math. Soc. 225 (1977), 123-144
MSC: Primary 30A32
DOI: https://doi.org/10.1090/S0002-9947-1977-0422599-3
MathSciNet review: 0422599
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \mathcal{S}$ denote the standard normalized class of regular, univalent functions in $ K = {K_1} = \{ z:\vert z\vert < 1\} $. Let $ \mathcal{F}$ be a given compact subclass of $ \mathcal{S}$. We consider the following two problems. Problem 1. Find $ \max \vert{a_2}\vert$ for $ f \in \mathcal{F}$. Problem 2. For $ \vert z\vert = r < 1$, find the $ \max \;(\min )\vert f(z)\vert$ for $ f \in \mathcal{F}$. In this paper we are concerned with the subclass $ \mathcal{S}_d^\ast(M) = \{ f \in \mathcal{S}:{K_d} \subset f(K) \subset {K_M}\} $. Through the use of the Julia variational formula and the Loewner theory we determine the extremal functions for Problems 1 and 2 for the class $ \mathcal{S}_d^\ast(M)$, for all d, M such that $ \tfrac{1}{4} \leqslant d \leqslant 1 \leqslant M \leqslant \infty $.


References [Enhancements On Off] (What's this?)

  • [1] D. A. Brannan and W. E. Kirwan, The Maclaurin coefficients of bounded convex functions, Bull. London Math. Soc. 2 (1970), 159-164. MR 42 #6211. MR 0271328 (42:6211)
  • [2] E. A. Coddington and N. Levinson, Theory of ordinary differential equations, McGraw-Hill, New York, 1955. MR 16, 1022. MR 0069338 (16:1022b)
  • [3] G. M. Goluzin, Geometric theory of functions of a complex variable, GITTL, Moscow, 1952; English transl. Transl. Math. Monographs, vol. 26, Amer. Math. Soc., Providence, R. I., 1969. MR 15, 112; 40 #308. MR 0247039 (40:308)
  • [4] W. K. Hayman, Multivalent functions, Cambridge Univ. Press, New York, 1967. MR 0108586 (21:7302)
  • [5] J. A. Hummel, A variational method for starlike functions, Proc. Amer. Math. Soc. 9 (1958), 82-87. MR 20 #1779. MR 0095273 (20:1779)
  • [6] J. A. Jenkins, On circularly symmetric functions, Proc. Amer. Math. Soc. 6 (1955), 620-624. MR 17, 249. MR 0072219 (17:249c)
  • [7] G. Julia, Sur une équation aux dérivées fonctionelles liée à la représentation conforme, Ann. Sci. École Norm. Sup. 39 (1922), 1-28. MR 1509240
  • [8] W. E. Kirwan, A note on extremal problems for certain classes of analytic functions, Proc. Amer. Math. Soc. 17 (1966), 1028-1030. MR 34 #2854. MR 0202995 (34:2854)
  • [9] J. Krzyz, Distortion theorems for bounded convex functions. II, Ann. Univ. Mariae Curie-Skłtodowska Sect. A 14 (1960), 7-18. MR 25 #4089. MR 0140673 (25:4089)
  • [10] K. Loewner, Untersuchungen über die Verserrung bei konformen Abbildungen des Einheitskreises $ \vert z\vert < 1$, Leipzig Berichte 69 (1917), 89-106.
  • [11] E. Netanyahu, On univalent functions in the unit disk whose image contains a given disk, 3. Analyse Math. 23 (1970), 305-322. MR 43 #6420. MR 0280701 (43:6420)
  • [12] Ch. Pommerenke, On the Loewner differential equation, Michigan Math. J. 13 (1966), 435-443. MR 34 #6064. MR 0206245 (34:6064)
  • [13] M. S. Robertson, Extremal problems for analytic functions with positive real part and applications, Trans. Amer. Math. Soc. 106 (1963), 236-253. MR 26 #325. MR 0142756 (26:325)
  • [14] T. J. Suffridge, A coefficient problem for a class of univalent functions, Michigan Math. J. 16 (1969), 33-42. MR 39 #1646. MR 0240297 (39:1646)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 30A32

Retrieve articles in all journals with MSC: 30A32


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1977-0422599-3
Keywords: Univalent, starlike, distortion theorems, variational techniques
Article copyright: © Copyright 1977 American Mathematical Society

American Mathematical Society