Strong differentiability properties of Bessel potentials

Authors:
Daniel J. Deignan and William P. Ziemer

Journal:
Trans. Amer. Math. Soc. **225** (1977), 113-122

MSC:
Primary 31B15

MathSciNet review:
0422645

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper is concerned with the ``strong'' differentiability properties of Bessel potentials of order of functions. Thus, for such a function *f*, we investigate the size (in the sense of an appropriate capacity) of the set of points *x* for which there is a polynomial of degree such that

*S*is allowed to run through the family of all oriented rectangles containing the origin.

**[A]**David R. Adams,*Maximal operators and capacity*, Proc. Amer. Math. Soc.**34**(1972), 152–156. MR**0350314**, 10.1090/S0002-9939-1972-0350314-1**[BZ]**Thomas Bagby and William P. Ziemer,*Pointwise differentiability and absolute continuity*, Trans. Amer. Math. Soc.**191**(1974), 129–148. MR**0344390**, 10.1090/S0002-9947-1974-0344390-6**[BF]**H. Busemann and W. Feller,*Zur differentiation der Lebesgueschen Integrale*, Fund. Math.**22**(1934), 226-256.**[CZ]**A.-P. Calderón and A. Zygmund,*Local properties of solutions of elliptic partial differential equations*, Studia Math.**20**(1961), 171–225. MR**0136849****[D]**Daniel J. Deignan,*Boundary regularity of weak solutions to a quasilinear parabolic equation*, Doctoral Dissertation, Indiana University, 1974.**[FZ]**Herbert Federer and William P. Ziemer,*The Lebesgue set of a function whose distribution derivatives are 𝑝-th power summable*, Indiana Univ. Math. J.**22**(1972/73), 139–158. MR**0435361****[GZ]**Ronald Gariepy and William P. Ziemer,*Behavior at the boundary of solutions of quasilinear elliptic equations*, Arch. Rational Mech. Anal.**56**(1974/75), 372–384. MR**0355332****[JMZ]**B. Jessen, J. Marcinkiewicz and A. Zygmund,*Note on the differentiability of multiple integrals*, Fund. Math.**25**(1935), 217-234.**[M1]**Norman G. Meyers,*A theory of capacities for potentials of functions in Lebesgue classes.*, Math. Scand.**26**(1970), 255–292 (1971). MR**0277741****[M2]**Norman G. Meyers,*Taylor expansion of Bessel potentials*, Indiana Univ. Math. J.**23**(1973/74), 1043–1049. MR**0348482****[M]**Anthony P. Morse,*Perfect blankets*, Trans. Amer. Math. Soc.**61**(1947), 418–442. MR**0020618**, 10.1090/S0002-9947-1947-0020618-0**[R]**N. M. Rivière,*Singular integrals and multiplier operators*, Ark. Mat.**9**(1971), 243–278. MR**0440268****[S]**S. Saks,*Remark on the differentiability of the Lebesgue indefinite integral*, Fund. Math.**22**(1934), 257-261.**[ST]**Elias M. Stein,*Singular integrals and differentiability properties of functions*, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR**0290095****[Z1]**A. Zygmund,*On the differentiability of multiple integrals*, Fund. Math.**23**(1934), 143-149.**[Z2]**-,*Trigonometric series*, 2nd ed., Cambridge Univ. Press, New York, 1959. MR**21**#6498.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
31B15

Retrieve articles in all journals with MSC: 31B15

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9947-1977-0422645-7

Article copyright:
© Copyright 1977
American Mathematical Society