Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Strong differentiability properties of Bessel potentials


Authors: Daniel J. Deignan and William P. Ziemer
Journal: Trans. Amer. Math. Soc. 225 (1977), 113-122
MSC: Primary 31B15
DOI: https://doi.org/10.1090/S0002-9947-1977-0422645-7
MathSciNet review: 0422645
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper is concerned with the ``strong'' $ {L_p}$ differentiability properties of Bessel potentials of order $ \alpha > 0$ of $ {L_p}$ functions. Thus, for such a function f, we investigate the size (in the sense of an appropriate capacity) of the set of points x for which there is a polynomial $ {P_x}(y)$ of degree $ k \leqslant \alpha $ such that

$\displaystyle \mathop {\lim \sup }\limits_{{\text{diam}}(S) \to 0} \;{({\text{d... ...rt S{\vert^{ - 1}}\int {\vert f(y) - {P_x}(y){\vert^p}dy} } \right\}^{1/p}} = 0$

where, for example, S is allowed to run through the family of all oriented rectangles containing the origin.

References [Enhancements On Off] (What's this?)

  • [A] David R. Adams, Maximal operators and capacity, Proc. Amer. Math. Soc. 34 (1972), 152-156. MR 50 #2807. MR 0350314 (50:2807)
  • [BZ] T. Bagby and W. P. Ziemer, Pointwise differentiability and absolute continuity, Trans. Amer. Math. Soc. 191 (1974), 129-148. MR 49 #9129. MR 0344390 (49:9129)
  • [BF] H. Busemann and W. Feller, Zur differentiation der Lebesgueschen Integrale, Fund. Math. 22 (1934), 226-256.
  • [CZ] A. P. Calderón and A. Zygmund, Local properties of solutions of elliptic partial differential equations, Studia Math. 20 (1961), 171-225. MR 25 #310. MR 0136849 (25:310)
  • [D] Daniel J. Deignan, Boundary regularity of weak solutions to a quasilinear parabolic equation, Doctoral Dissertation, Indiana University, 1974.
  • [FZ] H. Federer and W. P. Ziemer, The Lebesgue set of a function whose distribution derivatives are p-th power summable, Indiana Univ. Math. J. 22 (1972), 139-158. MR 0435361 (55:8321)
  • [GZ] Ronald Gariepy and W. P. Ziemer, Behavior at the boundary of solutions of quasilinear elliptic equations, Arch Rational Mech. Anal. 56 (1974/75), 372-384. MR 50 #7807. MR 0355332 (50:7807)
  • [JMZ] B. Jessen, J. Marcinkiewicz and A. Zygmund, Note on the differentiability of multiple integrals, Fund. Math. 25 (1935), 217-234.
  • [M1] N. G. Meyers, A theory of capacities for potentials of functions in Lebesgue classes, Math. Scand. 26 (1970), 255-292 (1971). MR 43 #3474. MR 0277741 (43:3474)
  • [M2] -, Taylor expansion of Bessel potentials, Indiana Univ. Math J. 23 (1973/74), 1043-1049. MR 50 #980. MR 0348482 (50:980)
  • [M] A. P. Morse, Perfect blankets, Trans. Amer. Math. Soc. 61 (1947), 418-442. MR 8, 571. MR 0020618 (8:571h)
  • [R] N. Riviere, Singular integrals and multiplier operators, Ark. Mat. 9 (1971), 243-278. MR 0440268 (55:13146)
  • [S] S. Saks, Remark on the differentiability of the Lebesgue indefinite integral, Fund. Math. 22 (1934), 257-261.
  • [ST] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, N. J., 1970. MR 44 #7280. MR 0290095 (44:7280)
  • [Z1] A. Zygmund, On the differentiability of multiple integrals, Fund. Math. 23 (1934), 143-149.
  • [Z2] -, Trigonometric series, 2nd ed., Cambridge Univ. Press, New York, 1959. MR 21 #6498.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 31B15

Retrieve articles in all journals with MSC: 31B15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1977-0422645-7
Article copyright: © Copyright 1977 American Mathematical Society

American Mathematical Society