Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Limit theorems for convolution iterates of a probability measure on completely simple or compact semigroups


Author: A. Mukherjea
Journal: Trans. Amer. Math. Soc. 225 (1977), 355-370
MSC: Primary 60B15
DOI: https://doi.org/10.1090/S0002-9947-1977-0423458-2
MathSciNet review: 0423458
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper extends the study (initiated by M. Rosenblatt) of the asymptotic behavior of the convolution sequence of a probability measure on compact or completely simple semigroups. Let S be a locally compact second countable Hausdorff topological semigroup. Let $ \mu $ be a regular probability measure on the Borel subsets of S such that S does not have a proper closed subsemigroup containing the support F of $ \mu $. It is shown in this paper that when S is completely simple with its usual product representation $ X \times G \times Y$, then the convolution sequence $ {\mu ^n}$ converges to zero vaguely if and only if the group factor G is noncompact. When the group factor G is compact, $ {\mu ^n}$ converges weakly if and only if $ {\underline {\lim } _{n \to \infty }}{F^n}$ is nonempty. This last result remains true for an arbitrary compact semigroup S generated by F. Furthermore, we show that in this case there exist elements $ {a_n} \in S$ such that $ {\mu ^n} \ast {\delta _{{a_n}}}$ converges weakly, where $ {\delta _{{a_n}}}$ is the point mass at $ {a_n}$. This result cannot be extended to the locally compact case, even when S is a group.


References [Enhancements On Off] (What's this?)

  • [1] J. F. Berglund and K. H. Hofmann, Compact semitopological semigroups and weakly almost periodic functions, Lecture Notes in Math., no. 42, Springer-Verlag, New York, 1967. MR 36 #6531. MR 0223483 (36:6531)
  • [2] H. S. Collins, Convergence of convolution iterates of measures, Duke Math. J. 29 (1962), 259-264. MR 25 #1238. MR 0137789 (25:1238)
  • [3] I. Csiszár, On infinite products of random elements, etc., Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 5 (1966), 279-295. MR 0205306 (34:5137)
  • [4] -, On the $ weak^\ast$-continuity of convolution in a convolution algebra over an arbitrary topological group, Studia Sci. Math. Hungar. 6 (1971), 27-40. MR 44 #5795. MR 0288599 (44:5795)
  • [5] U. Grenander, Probabilities on algebraic structures, Wiley, New York and London; Almqvist and Wiksell, Stockholm, 1963. MR 34 #6810. MR 0259969 (41:4598)
  • [6] E. Hewitt and K. A. Ross, Abstract harmonic analysis. Vol. I, Springer-Verlag, Berlin; Academic Press, New York, 1963. MR 28 # 158. MR 551496 (81k:43001)
  • [7] Y. Kawada and K. Itô, On the probability distribution on a compact group. I, Proc. Phys.-Math. Soc. Japan (3) 22 (1940), 977-998. MR 2, 223. MR 0003462 (2:223e)
  • [8] B. M. Kloss, Probability distributions on bicompact topological groups, Teor. Verojatnost. i Primenen. 4 (1959), 225-290 = Theor. Probability Appl. 4 (1959), 237-270. MR 22 #3761; 23 #A676. MR 0123348 (23:A676)
  • [9] P. Martin-Löf, Probability theory on discrete semigroups, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 4 (1965), 78-102. MR 32 #1740. MR 0184267 (32:1740)
  • [10] A. Mukherjea, On the convolution equation $ P = P \ast Q$ of Choquet and Deny for probability measures on semigroups, Proc. Amer. Math. Soc. 32 (1972), 457-463. MR 45 #2764. MR 0293687 (45:2764)
  • [11] -, Limit theorems for probability measures on non-compact groups and semigroups, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 33 (1976), 273-284.
  • [12] A. Mukherjea and N. A. Tserpes, Idempotent measures on locally compact semigroups, Proc. Amer. Math. Soc. 29 (1971), 143-150. MR 45 #5268. MR 0296207 (45:5268)
  • [13] J. S. Pym, Idempotent measures on semigroups, Pacific J. Math. 12 (1962), 685-698. MR 26 #6298. MR 0148793 (26:6298)
  • [14] -, Idempotent probability measures on compact semitopological semigroups, Proc. Amer. Math. Soc. 21 (1969), 499-501. MR 38 #6031. MR 0237750 (38:6031)
  • [15] M. Rosenblatt, Limits of convolution sequences of measures on a compact topological semigroup, J. Math. Mech. 9 (1960), 293-305; addendum, ibid. 10 (1961), 681. MR 22 #9544; 22 p. 2547. MR 0118773 (22:9544)
  • [16] -, Equicontinuous Markov operators, Teor. Verojatnost. i Primenen. 9 (1964), 205-222 = Theor. Probability Appl. 9 (1964), 180-197. MR 30 #1549. MR 0171318 (30:1549)
  • [17] -, Markov processes: structure and asymptotic behavior, Springer-Verlag, New York, 1971. MR 48 #7379. MR 0329037 (48:7379)
  • [18] A. Tortrat, Lois tendues $ \mu $ sur un demi-groupe topologique complètement simple X, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 6 (1966), 145-160. MR 35 #1063. MR 0210169 (35:1063)
  • [19] J. H. Williamson, Harmonic analysis on semigroups, J. London Math. Soc. 42 (1967), 1-41. MR 34 #8101. MR 0208291 (34:8101)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 60B15

Retrieve articles in all journals with MSC: 60B15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1977-0423458-2
Keywords: Locally compact topological group, convolution of measures, weak$ ^\ast$-topology
Article copyright: © Copyright 1977 American Mathematical Society

American Mathematical Society