Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Stability in Witt rings


Author: Thomas C. Craven
Journal: Trans. Amer. Math. Soc. 225 (1977), 227-242
MSC: Primary 13K05; Secondary 13A15
DOI: https://doi.org/10.1090/S0002-9947-1977-0424800-9
MathSciNet review: 0424800
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: An abstract Witt ring R is defined to be a certain quotient of an integral group ring for a group of exponent 2. The ring R has a unique maximal ideal M containing 2. A variety of results are obtained concerning n-stability, the condition that $ {M^{n + 1}} = 2{M^n}$, especially its relationship to the ring of continuous functions from the space of minimal prime ideals of R to the integers. For finite groups, a characterization of integral group rings is obtained in terms of n-stability. For Witt rings of formally real fields, conditions equivalent to n-stability are given in terms of the real places defined on the field.


References [Enhancements On Off] (What's this?)

  • [1] Ron Brown, An approximation theorem for extended prime spots, Canad. J. Math. 24 (1972), 167-184. MR #1884. MR 0292802 (45:1884)
  • [2] -, Real places and ordered fields, Rocky Mountain J. Math. 1 (1971), 633-636. MR 44 #2730. MR 0285512 (44:2730)
  • [3] -, Superpythagorean fields, J. Algebra (to appear). MR 0427286 (55:320)
  • [4] T. Craven, The Boolean space of orderings of a field, Trans. Amer. Math. Soc. 209 (1975), 225-235. MR 0379448 (52:353)
  • [5] R. Elman and T. Y. Lam, Quadratic forms over formally real fields and Pythagorean fields, Amer. J. Math. 94 (1972), 1155-1194. MR 47 #3427. MR 0314878 (47:3427)
  • [6] R. Elman, T. Y. Lam and A. Prestel, On some Hasse principles over formally real fields, Math. Z. 134 (1973), 291-301. MR 48 #8384. MR 0330045 (48:8384)
  • [7] B. W. Jones, The arithmetic theory of quadratic forms, Carus Math. Monos., no. 10, Math. Assoc. Amer.; distributed by Wiley, New York, 1950. MR 12, 244. MR 0037321 (12:244a)
  • [8] M. Knebusch, On the extension of real places, Comment. Math. Helv. 48 (1973), 354-369. MR 49 #2681. MR 0337912 (49:2681)
  • [9] M. Knebusch, A. Rosenberg and R. Ware, Signatures on emilocal rings, J. Algebra 26 (1973), 208-250. MR 48 #6103. MR 0327761 (48:6103)
  • [10] -, Structure of Witt rings and quotients of Abelian group rings, Amer. J. Math. 94 (1972), 119-155. MR 45 #5164. MR 0296103 (45:5164)
  • [11] -, Structure of Witt rings, quotients of abelian group rings, and orderings of fields, Bull. Amer. Math. Soc. 77 (1971), 205-210. MR 42 #5974. MR 0271091 (42:5974)
  • [12] S. Lang, The theory of real places, Ann. of Math. (2) 57 (1953), 378-391. MR 14, 841. MR 0053924 (14:841b)
  • [13] J. Milnor and D. Husemoller, Symmetric bilinear forms, Ergebnisse Math. Grenzgebiete, Band 73, Springer, Berlin, 1973. MR 0506372 (58:22129)
  • [14] A. Prestel, Quadratische Semi-Ordnungen und quadratische Formen, Math. Z. 133 (1973), 319-342. MR 49 #2682. MR 0337913 (49:2682)
  • [15] R. Ware, When are Witt rings group rings?, Pacific J. Math. 49 (1973), 279-284. MR 48 #10980. MR 0332654 (48:10980)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 13K05, 13A15

Retrieve articles in all journals with MSC: 13K05, 13A15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1977-0424800-9
Keywords: Witt ring, n-stability, group ring, real place, Boolean space
Article copyright: © Copyright 1977 American Mathematical Society

American Mathematical Society