A SINGULAR SEMILINEAR EQUATION IN $L^1(\mathbb{R})$

BY

MICHAEL G. CRANDALL AND LAWRENCE C. EVANS

Abstract. Let β be a positive and nondecreasing function on \mathbb{R}. The boundary-value problem $\beta(u) - u'' = f$, $u'(\pm\infty) = 0$ is considered for $f \in L^1(\mathbb{R})$. It is shown that this problem can have a solution only if β is integrable near $-\infty$, and that if this is the case, then the problem has a solution exactly when $\int_{-\infty}^{\infty} f(x) \, dx > 0$.

In [5, Lemma 5.6] T. Kurtz proves that the problem $e^u - u'' = f$ has a solution $u \in C^2(\mathbb{R})$ satisfying $u'(\pm\infty) = \lim_{x \to \pm\infty} u'(x) = 0$, whenever f is nonnegative, continuous, compactly supported, and not identically equal to zero. Herein we study more general problems of the form

$$
\beta(u) - u'' \ni f, \quad u'(\pm\infty) = 0,
$$

where β is a maximal monotone graph in \mathbb{R} (see, for example, Brezis [2, §1.8]). In particular, β can be any continuous, nondecreasing function on \mathbb{R}. If $0 \in \text{int} \, \beta(\mathbb{R})$, this problem is well understood; see Benilan, Brezis and Crandall [1] and Proposition 1 below. When $\beta(\mathbb{R}) \subseteq (0, \infty)$, as for the case $\beta(u) = e^u$, Kurtz's result is the only one known to the authors; and his methods depend very strongly on the explicit form of $\beta(u) = e^u$. We characterize those maximal monotone graphs β with $\beta(\mathbb{R}) \subseteq (0, \infty)$ for which (P) has a solution for some $f \in L^1(\mathbb{R})$, and then show that for such β (P) has a solution if and only if $\int_{-\infty}^{\infty} f(x) \, dx > 0$. Thus our conclusions are sharp as regards possible β and f in (P).

Let us be more precise. If β is any maximal monotone graph and $f \in L^1_{\text{loc}}(\mathbb{R})$, by a solution of (P) we understand a function u such that u and u' are locally absolutely continuous on \mathbb{R}, $f(x) + u''(x) \in \beta(u(x))$ a.e., and $u'(\pm\infty) = 0$. We denote by $D(\beta)$ the domain of β and by β^0 the minimal section of β; the function β^0 assigns to $r \in D(\beta)$ the element in $\beta(r)$ of least modulus (so $\beta = \beta^0$ if β is single-valued).

Received by the editors August 14, 1975.

Key words and phrases. Nonlinear boundary value problem, accretive operator.

(1) Sponsored by the United States Army under Contract No. under Contract No. DA-31-124 ARO-D-462.

© American Mathematical Society 1977
The main result is

Theorem 1. Suppose β is a maximal monotone graph in \mathbb{R} with $\beta(\mathbb{R}) \subseteq (0, \infty)$. Then the following are equivalent:

(i) If $f \in L^1(\mathbb{R})$, then f has a solution exactly when $\int_{-\infty}^{\infty} f(x) \, dx > 0$.

(ii) There exists some $f \in L^1(\mathbb{R})$ for which (P_f) has a solution.

(iii) There is an $a \in \mathbb{R}$ for which $(-\infty, a) \subseteq D(\beta)$ and $\int_{-\infty}^{a} \beta^0(x) \, dx < \infty$.

This result is of interest because if (i), (ii), or (iii) holds, then the (possibly multivalued) mapping $f + u'' \mapsto -u''$, u the solution to (P_f), defines an accretive operator in $L^1(\mathbb{R})$: see Lemma 4(c). This operator generates a semigroup of contractions on a subset of $L^1(\mathbb{R})$ associated with the nonlinear partial differential equation $u_t - \beta(\phi)_{xx} = 0$, for $\phi = \beta^{-1}$. (See, for example, [4, §3].)

To obtain Kurtz’s result from Theorem 1 we need only note that $\int_{-\infty}^{0} e^x \, dx < \infty$, and so (iii) is valid for $\beta(x) = e^x$. And conversely if, for example, $\beta(x) = -1/x$ for large negative x, the equivalence of (ii) and (iii) implies that (P_f) does not have a solution for any $f \in L^1(\mathbb{R})$.

Proof of Theorem 1. We prove Theorem 1 by establishing (i) \Rightarrow (iii) \Rightarrow (ii) \Rightarrow (i), in that order; the implications are arranged in increasing levels of difficulty. We begin with some simple remarks.

Let β satisfy the assumption of Theorem 1. Define

$$L^1(\mathbb{R})_+ = \left\{ f \in L^1(\mathbb{R}) \mid \int_{-\infty}^{\infty} f(x) \, dx > 0 \right\}.$$

We note first of all that $f \in L^1(\mathbb{R})_+$ is a necessary condition for the solvability of (P_f). If u solves (P_f), then $f + u'' \in \beta(u)$ implies $f + u'' > 0$ a.e. and so

$$0 < \int_{-\infty}^{\infty} f(x) + u''(x) \, dx = \lim_{R \to \infty} \int_{-R}^{R} f(x) + u''(x) \, dx = \int_{-\infty}^{\infty} f(x) \, dx,$$

since $\lim_{R \to \infty} u'(\pm R) = 0$. Moreover this same calculation and Fatou’s Lemma imply $f + u'' \in L^1(\mathbb{R})$ and $\|f + u''\|_1 \leq \|f\|_1$ (denoting the norm in $L^p(\mathbb{R})$, $1 \leq p \leq \infty$). Thus if u is a solution of (P_f), $u'' \in L^1(\mathbb{R})$ and $\|u''\|_1 \leq 2\|f\|_1$.

Definition. E is the linear subspace of functions u defined on \mathbb{R} such that u and u' are locally absolutely continuous, $u'' \in L^1(\mathbb{R})$, and $u'(\pm \infty) = 0$.

We have proved that if u solves (P_f) for some $f \in L^1(\mathbb{R})$, then $f \in L^1(\mathbb{R})_+$, $u \in E$, and $\|u''\|_1 \leq 2\|f\|_1$, $\|f + u''\|_1 \leq \|f\|_1$. Also $u \in E$ clearly implies $\|u''\|_\infty \leq \|u''\|_1$.

Proof of (i) \Rightarrow (iii). If $f \in L^1(\mathbb{R})_+$ and u solves (P_f), then $u' \in L^\infty(\mathbb{R})$ by the preceding; and so there is a positive constant c such that $u(x) \geq cx$ for $x \leq -1$. Furthermore,
A SINGULAR SEMILINEAR EQUATION IN $L^1(\mathbb{R})$

$$f(x) + u''(x) \geq \beta^0(u(x)) \geq \beta^0(cx) > 0$$

a.e. for $x < -1$, since β^0 is positive and nondecreasing. Therefore

$$\|f\|_1 \geq \|f + u''\|_1 > \int_{-\infty}^{-1} \beta^0(cx) \, dx = \frac{1}{c} \int_{-\infty}^{-c} \beta^0(y) \, dy;$$

and (iii) follows.

Proof of (iii) \Rightarrow (ii). This is a bit more subtle. Suppose $\int_{-\infty}^{a} \beta^0(x) \, dx < \infty$.

Let us for the moment assume that such a g exists. Define $v: (-\infty, -1] \to \mathbb{R}$ by

$$v(x) = \frac{1}{g(v(x))}, \quad x < -1,$$

$$v(-1) = a - 1.$$

Since g is positive, nonincreasing, and continuously differentiable, v is increasing, convex, and twice continuously differentiable. In addition, it is clear that $v(x) \to -\infty$ as $x \to -\infty$, because g is bounded above on compact sets. Since $g(x) \to \infty$ when $x \to -\infty$, $v'(-\infty) = 0$. Moreover

$$v'' \in L^1(-\infty, -1)$$

and

$$\int_{-\infty}^{-1} \beta^0(v(x)) \, dx = \int_{-\infty}^{a-1} \beta^0(y) \frac{1}{v'(v^{-1}(y))} \, dy = \int_{-\infty}^{a-1} \beta^0(y)g(y) \, dy < \infty.$$

Let u be any even, twice continuously differentiable function on \mathbb{R} which satisfies $u(x) = v(x)$ for $x < -1$ and $u < a$ everywhere. Then, by the construction, $f(x) = u''(x) + \beta^0(u(x)) \in L^1(\mathbb{R})$ and $u'(\pm \infty) = 0$, u is a solution of (P).

It remains to prove the existence of g with the properties (1). Select a sequence $(a_n)_{n=1}^{\infty}$ which satisfies $a_n < a_{n-1} < a$ for $n = 1, 2, \ldots$ and $\int_{-\infty}^{a_n} \beta^0(x) \, dx < 1/n^2$. Now take g to be any nonincreasing continuously differentiable function so that $g(a_n) = \sqrt{n}$, $n = 1, 2, \ldots$, and $g = 1$ on $[a_1, a]$. Then
\[
\int_{-\infty}^{a} \beta^0(x)g(x) \, dx = \int_{a_1}^{a} \beta^0(x) \, dx + \sum_{n=1}^{\infty} \int_{a_{n+1}}^{a_n} \beta^0(x)g(x) \, dx \\
\leq \int_{a_1}^{a} \beta^0(x) \, dx + \sum_{n=1}^{\infty} \sqrt{n + 1} \int_{a_{n+1}}^{a_n} \beta^0(x) \, dx \\
\leq \int_{a_1}^{a} \beta^0(x) \, dx + \sum_{n=1}^{\infty} \frac{\sqrt{n + 1}}{n^2} < \infty;
\]

\(g\) has the desired properties.

Proof of (ii) \(\Rightarrow\) (i). This implication is the most difficult and its proof requires several steps. The lemmas following outline the program.

Lemma 1. Let \(f, g \in L^1(\mathbb{R})_+\) and \(\int_{-\infty}^{\infty} f(x) \, dx > \int_{-\infty}^{\infty} g(x) \, dx\). If \((P_g)\) has a solution, then so does \((P_f)\).

Lemma 2. If (ii) holds, then

\[
\left\{ f \in L^1(\mathbb{R})_+ \mid \exists g \in L^1(\mathbb{R})_+, \int_{-\infty}^{\infty} f(x) \, dx \right. \left\{ \int_{-\infty}^{\infty} g(x) \, dx, \text{ and } (P_f) \text{ has a solution} \right\} = L^1(\mathbb{R})_+.
\]

The combined implications of Lemmas 1–2 prove that (ii) \(\Rightarrow\) (i). If (ii) is valid, Lemmas 1 and 2 demonstrate that \((P_f)\) has a solution for all \(f \in L^1(\mathbb{R})_+\). Again we prove these results in order of ascending difficulty.

Proof of Lemma 2. Choose \(f \in L^1(\mathbb{R})\) so that \((P_f)\) has a solution \(u\); by (ii) there is at least one such \(f\) (and in fact \(f \in L^1(\mathbb{R})_+\)). Now for fixed \(\epsilon > 0\) we prove that there is some \(g \in L^1(\mathbb{R})_+, \|g\|_1 < \epsilon\), for which \((P_f)\) also has a solution. If \(\delta, M > 0\), define \(u_{\delta,M}(x) = u(\delta x) - M\). Then \(u_{\delta,M}\) solves \((P_{f_{\delta,M}})\), where

\[
f_{\delta,M}(x) = \beta^0(u_{\delta,M}(x)) - (u_{\delta,M})''(x) = \beta^0(u(\delta x) - M) - \delta^2 u''(x).
\]

We have \(\|u_{\delta,M}'\|_1 = \delta \|u''\|_1 < \epsilon/2\) for a fixed \(\delta\) small enough. Moreover \(\lim_{M \to \infty} \beta^0(u(\delta x) - M) = 0\) since \(\beta^0(x) \to 0\) as \(x \to -\infty\) (otherwise (ii) could not hold). By the Dominated Convergence Theorem we can choose \(M\) so large that \(\|\beta^0(u(\delta x) - M)\|_1 < \epsilon/2\). Then \(g = f_{\delta,M}\) satisfies \(\|g\|_1 < \epsilon\).

Therefore \((P_f)\) has a solution for \(g\)'s with arbitrarily small \(L^1\)-norm. Now take any \(f \in L^1(\mathbb{R})_+\) and let \(g\) be as above and satisfy \(\int_{-\infty}^{\infty} f(x) \, dx > \|g\|_1\). Then \(\int_{-\infty}^{\infty} f(x) \, dx > \int_{-\infty}^{\infty} g(x) \, dx\). The proof is complete.

For the proof of Lemma 1 we require another Lemma 3(a) below. (Parts (b) and (c) are included for interest's sake.)

Lemma 3. (a) Let \(v \in \mathcal{C}\), and \(p \in L^\infty(\mathbb{R})\) be locally Lipschitz continuous and nondecreasing. Then \(p'(v)v'^2 \in L^1(\mathbb{R})\) and
A SINGULAR SEMILINEAR EQUATION IN $L^1(R)$

$$\int_{-\infty}^{\infty} p(v(x))v''(x) + p'(v(x))v'(x)^2 dx = 0.$$

(b) Let

$$\text{Sign } r = \begin{cases}
1, & r > 0, \\
[-1,1], & r = 0, \\
(-1), & r < 0.
\end{cases}$$

If $a \in L^\infty(R)$, $v \in \mathcal{L}$, and $a(x) \in \text{Sign } v(x)$ a.e., then $\int_{-\infty}^{\infty} v'' a(x) dx \leq 0$.

(c) If $f, \tilde{f} \in L^1(R_+)_u, \tilde{u}$ are solutions of (P_f) and $(P_{\tilde{f}})$, respectively, then $\|f + u'' - \tilde{f} + \tilde{u}''\|_1 \leq \|f - \tilde{f}\|_1$.

Proof of Lemma 3. We adapt arguments used in [1] and [3] to this simple case. If $R > 0$, then

$$\int_{-R}^{R} p(v(x))v''(x) + p'(v(x))v'(x)^2 dx = p(v(R))v'(R) - p(v(-R))v'(-R).$$

Since $p \in L^\infty(R)$ and $v'(-\infty) = 0$, (a) follows from Fatou's Lemma by letting $R \to \infty$ above.

To obtain (b), apply (a) with $p(s) = p_n(s) = p_0(ns)$, where $p_0(s) = s$ for $|s| < 1$ and $p_0(s) = \text{sign } s$ for $|s| \geq 1$. Then by (a) $\int_{-\infty}^{\infty} p_n(v)v'' dx \leq 0$. But $p_n(v) \to \text{sign}_0(v)$, where $\text{sign}_0 s = \text{sign } s$ for $s \neq 0$, $\text{sign}_0 0 = 0$. Therefore we can send $n \to \infty$ to conclude

$$\int_{[v > 0]} v''(x) dx - \int_{[v < 0]} v''(x) dx \leq 0$$

$([v > 0] = \{x|v(x) > 0\}$, etc.). Finally $v'(x) = 0$ a.e. on $[v = 0]$ and so $v''(x) = 0$ a.e. on this set (the derivative of any absolutely continuous function v vanishes a.e. on $[v = c]$ for any $c \in R$). If $a(x) \in \text{Sign } v(x)$ a.e., we therefore have

$$\int_{-\infty}^{\infty} a(x)v''(x) dx = \int_{[v > 0]} v''(x) dx - \int_{[v < 0]} v''(x) dx + \int_{[v = 0]} a(x)v''(x) dx$$

$$= \int_{[v > 0]} v''(x) dx - \int_{[v < 0]} v''(x) dx \leq 0.$$

(It is not hard to prove that equality actually holds.) To prove (c) let

$$a(x) = \begin{cases}
1 & \text{on } [f + u'' > \tilde{f} + \tilde{u}''] \cup [u > \tilde{u}], \\
0 & \text{on } [f + u'' = \tilde{f} + \tilde{u}''] \cap [u = \tilde{u}], \\
-1 & \text{on } [f + u'' < \tilde{f} + \tilde{u}''] \cup [u < \tilde{u}].
\end{cases}$$

Then a is well defined since β is monotone, $a(x) \in \text{Sign}(u - \tilde{u})(x)$ a.e., and $a(f + u'' - (\tilde{f} + \tilde{u}'')) = |f + u'' - (\tilde{f} + \tilde{u}'')|$ a.e. By (b)
\[\|f + u'' - (f + \hat{u}'')\|_1 = \int_{-\infty}^{\infty} a(f - \hat{f}) \, dx + \int_{-\infty}^{\infty} a(u - \hat{u})'' \, dx \leq \int_{-\infty}^{\infty} a(f - \hat{f}) \, dx \leq \|f - \hat{f}\|_1, \]

and (c) is proved.

Proof of Lemma 1. Suppose \(f, g \in L^1(\mathbb{R}) \) and \(\int_{-\infty}^{\infty} f(x) \, dx > \int_{-\infty}^{\infty} g(x) \, dx \). Assume \((P_g)\) has a solution. To prove that then \((P_f)\) has a solution we employ the following result of Benilan, Brezis and Crandall [1, §4]:

Proposition 1. Suppose \(\gamma \) is a maximal monotone graph in \(\mathbb{R} \) with 0 \(\in \gamma(0) \) and 0 \(\in \text{int} \gamma(\mathbb{R}) \). Then for every \(f \in L^1(\mathbb{R}) \) there is a function \(v \) such that

- \(v, v' \in L^\infty(\mathbb{R}) \) and \(v'' \in L^1(\mathbb{R}) \),
- \(f(x) + v''(x) \in \gamma(v(x)) \) a.e.,
- \(v'(\pm \infty) = 0, \|v'\|_\infty \leq \|v''\|_1 \leq 2\|f\|_1 \).

Remark 1. At this point there is a discontinuity in our presentation: except for Proposition 1 the discussion does not assume the reader to be familiar with [1] or [3]. The interested reader should attempt to prove Proposition 1 for himself, at least for the special case when \(\gamma \) is continuous. (This one-dimensional proposition does not require the machinery of [1].)

Proposition 1 allows us to solve as follows certain problems approximating \((P_f)\).

For \(0 < \lambda < \sup \beta(\mathbb{R}) \) there is a number \(r_\lambda \in D(\beta) \) with \(\lambda \in \beta(r_\lambda) \). Set \(\beta^\lambda(x) = \beta(x + r_\lambda) - \lambda \); then \(\beta^\lambda \) satisfies the assumptions on \(\gamma \) in Proposition 1. And so there exists a \(w_\lambda \) satisfying (a), (b), (c), with \(\beta^\lambda \) in place of \(\gamma \). Define \(u_\lambda = w_\lambda + r_\lambda \). Then we have

- \(u_\lambda, u_\lambda' \in L^\infty(\mathbb{R}), u_\lambda'' \in L^1(\mathbb{R}) \),
- \(f(x) + u_\lambda''(x) \in \beta^\lambda(w_\lambda(x)) = \beta(u_\lambda(x)) - \lambda \) a.e.,
- \(u_\lambda'(\pm \infty) = 0, \|u_\lambda'\|_\infty \leq \|u_\lambda''\|_1 \leq 2\|f\|_1 \).

The solution \(u \) of \((P_f)\) will be constructed as the limit of the \(u_\lambda \) as \(\lambda \downarrow 0 \). First we show the \(u_\lambda \) decreases as \(\lambda \) decreases. Let \(p \) be a smooth, nondecreasing function defined on \(\mathbb{R} \) such that \(p(x) = 0 \) for \(x \geq 0 \), \(p(x) < 0 \) for \(-1 < x < 0 \), \(p(x) = -1 \) for \(x \leq -1 \). Now \((u_\lambda - u_\eta)' = \beta(u_\lambda(x)) - \beta(u_\eta(x)) + \eta - \lambda \); and so, by the monotonicity of \(\beta \),

\[p(u_\lambda - u_\eta)(u_\lambda - u_\eta)'' \geq (\eta - \lambda) p(u_\lambda - u_\eta). \]

Lemma 3(a) implies \(\int_{-\infty}^{\infty} p(u_\lambda - u_\eta)(u_\lambda - u_\eta)'' \, dx \leq 0 \). Letting \(\lambda > \eta \) we conclude that \(u_\lambda \geq u_\eta \) a.e.
To discover a (pointwise) lower bound for the u_λ we recall that the problem (P_β) has a solution v:

$$(P_\beta) \quad g(x) + v(x)^\prime \in \beta(v(x)) \quad \text{a.e.}, \quad v'(\pm \infty) = 0.$$

As in the preceding we construct approximate functions u_λ which satisfy conditions like (2), with g replacing f. The u_λ, like the u_λ, decrease as $\lambda \searrow 0$. In addition, the u_λ are bounded from below by v; this is proved by the same method as above.

We claim that there is some $x_0 \in \mathbb{R}$ such that $\{u_\lambda(x_0)\}$ is bounded. If not, then $u_\lambda(x) \to -\infty$ as $\lambda \searrow 0$ for every $x \in \mathbb{R}$. Subtract the equation satisfied by v_λ from that satisfied by u_λ:

$$f(x) - g(x) + (u_\lambda(x) - v_\lambda(x))^\prime \prime \in \beta(u_\lambda(x)) - \beta(v_\lambda(x)).$$

Multiply this by $p(u_\lambda(x) - v_\lambda(x))$ $(p$ as defined above), recall the monotonicity of β, and integrate:

$$\int_{-\infty}^{\infty} (f(x) - g(x))p(u_\lambda(x) - v_\lambda(x)) + (u_\lambda(x) - v_\lambda(x))^\prime p(u_\lambda(x) - v_\lambda(x)) \, dx \geq 0.$$

By Lemma 3(a), we have

$$\int_{-\infty}^{\infty} (f(x) - g(x))p(u_\lambda(x) - v_\lambda(x)) \, dx \geq 0.$$

For fixed x, $u_\lambda(x) \to -\infty$ and $v_\lambda(x)$ is bounded; therefore $p(u_\lambda(x) - v_\lambda(x)) \to -1$. So the Dominated Convergence Theorem applied to (4) leads to $
int_{-\infty}^{\infty} (g(x) - f(x)) \, dx \geq 0.$ However this contradicts the assumption on f and g. Hence there is some x_0 for which $\{u_\lambda(x_0)\}$ is bounded; and this implies, since $\|u_\lambda\|_0 \leq 2\|f\|_1$, that the u_λ are bounded uniformly on compact sets. They thus converge monotonically and uniformly on compact sets to a limit $u = \lim_{\lambda \searrow 0} u_\lambda$.

Furthermore $u_\lambda(x)^\prime + \lambda + f(x) \in \beta(u_\lambda(x))$ and $u_\eta(x)^\prime + \eta + f(x) \in \beta(u_\eta(x))$ a.e. implies $u_\alpha^\prime + \lambda \leq u_\eta^\prime + \eta$ if $u_\lambda < u_\eta$. Since $u_\alpha^\prime = u_\eta^\prime$ a.e. on $[u_\lambda = u_\eta]$, $u_\lambda^\prime + \lambda \leq u_\eta^\prime + \eta$ a.e. Also $u_\alpha^\prime(x) + \lambda > -f(x)$ a.e. because $0 < \beta^0(u_\lambda(x)) \leq u_\alpha^\prime(x) + \lambda + f(x)$. It follows that the u_α^\prime converge in $L^1_{\text{loc}}(\mathbb{R})$ to u^\prime as $\lambda \searrow 0$, and therefore that $f + u^\prime \in \beta(u)$ a.e.

We must show that $u'(\pm \infty) = 0$. Since $\|u_\lambda\|_0 \leq 2\|f\|_1$ by (2), Fatou's Lemma implies $u^\prime \in L^1(\mathbb{R})$, and therefore $u'(\pm \infty)$ and $u'(-\infty)$ exist. It suffices to prove that $u'(-\infty) = 0$, the same equality for $u'(\pm \infty)$ following by similar arguments. Since $u \leq u_\lambda$ and $u_\lambda(-\infty) = 0$, $u'(-\infty) \geq 0$. We multiply both sides of (3) by $p(u_\lambda - v_\lambda)$ as before and integrate:
\[\int_{-\infty}^{y} (u_\lambda(x) - u_\Lambda(x))^\prime p(u_\lambda(x) - v_\lambda(x)) \, dx \leq \int_{-\infty}^{y} (f(x) - g(x)) p(u_\lambda(x) - v_\lambda(x)) \, dx \]
\[\leq \int_{-\infty}^{y} |f(x) - g(x)| \, dx. \]

Integrate by parts on the left and recall that \(u'_\lambda(-\infty) = v'_\lambda(-\infty) = 0 \):

\[[u'_\lambda(y) - u'_\Lambda(y)] p(u_\lambda(y) - v_\lambda(y)) \leq \int_{-\infty}^{y} |f(x) - g(x)| \, dx. \]

Since \(u'_\lambda \to u'' \) in \(L^1_{\text{loc}}(\mathbb{R}) \), \(u'_\lambda \to u' \) in \(C(\mathbb{R}) \); and similarly for the \(v_\lambda \). So for every \(y \) we can pass to the limit as \(\lambda \searrow 0 \) in (5) to deduce

\[[u'(y) - u'(y)] p(u(y) - v(y)) \leq \int_{-\infty}^{y} |f(x) - g(x)| \, dx. \]

Suppose that \(u'(-\infty) > 0 \). Then for all \(y \) less than some number, \(u(y) < v(y) - 1 \) and so \(p(u(y) - v(y)) = -1 \). Thus sending \(y \to -\infty \) in (6) implies \(u'(-\infty) \leq v'(-\infty) = 0 \), a contradiction. Therefore \(u'(-\infty) = 0 \), and the proof is complete.

Remark 2. We record some additional facts about solutions \(u \) of \((P) \) and the map \(f \in L^1(\mathbb{R})_+ \mapsto Tf = f + u' \). First, \(T \) is a contraction by Lemma 3(c). Next, if \(u \) is a solution of \((P) \), then \(u(\pm \infty) = -\infty \). Indeed, if there is a sequence \(x_n, |x_n| \to \infty \) and \(u(x_n) \geq -A \) for some \(A \), then \(u(x) \geq -A - \|u'\|_\infty \) on \(|x - x_n| \leq 1 \) and \(\text{measure}(|u(x) \geq -A - \|u'\|_\infty|) = \infty \). But \(\beta^0(u(x)) \geq \beta^0(-A - \|u'\|_\infty) > 0 \) on this set, contradicting \(\beta^0(u(x)) \in L^1(\mathbb{R}) \).

Second, if \(u \) and \(\hat{u} \) are solutions of \((P) \), then \(Tf = f + u' = f + \hat{u}' \) implies \(u' - \hat{u}' \) is a constant. Since \(u'(\pm \infty) = \hat{u}'(\pm \infty), \hat{u}' = \hat{u}' \). Thus \(u = \hat{u} + c \) for some \(c \in \mathbb{R}, c \geq 0 \) without loss of generality. Now \(Tf(x) \in \beta(\hat{u}(x)) \cap \beta(\hat{u}(x) + c) \) a.e. Since \(\hat{u}(x) \to -\infty \) as \(|x| \to \infty \), we can choose \(x \) so that \(u(x) \) is a point of strict increase of \(\beta^0, \beta^0(\hat{u}(x)) < \beta^0(\hat{u}(x) + r) \) for \(r > 0 \). For this \(x \) we conclude that \(c = 0 \). Finally, if \(f, \hat{f} \in L^1(\mathbb{R})_+ \), then

\[\int_{-\infty}^{\infty} (Tf - T\hat{f})^+ \, dx \leq \int_{-\infty}^{\infty} (f - \hat{f})^+ \, dx, \]

\[m < f < M \text{ a.e. implies } m < Tf < M \text{ a.e.,} \]

and

\[f \in L^1(\mathbb{R})_+ \implies \int_{-\infty}^{\infty} j(Tf) \, dx \leq \int_{-\infty}^{\infty} j(f) \, dx \]

for every convex lower-semicontinuous function \(j: \mathbb{R} \to [0, \infty] \) satisfying \(j(0) = 0 \). The estimates (7) (which imply that \(T \) is order preserving) and (8)
may be proved directly in a fashion similar to Lemma 3. Alternatively, according to [1], (7), (8) and (9) hold for the mappings $T_\lambda: f \to f + u_\lambda$, where u_λ is as in (2), and one just lets λ tend to zero. Also, (7) and (8) imply (9) by results of [3].

Added in proof. In a paper to appear in the Israel Journal of Mathematics, S. Fisher shows (among other things) that Theorem 1 remains correct if $\beta \in C(\mathbb{R})$; $\beta(-\infty) = 0$, $\beta > 0$ and $\beta \notin L^1(\mathbb{R})$. We also thank Professor Fisher for a useful remark.

REFERENCES

MATHEMATICS RESEARCH CENTER, UNIVERSITY OF WISCONSIN, MADISON, WISCONSIN 53706
(Current address of M. G. Crandall)

Current address: (L. C. Evans): Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506