ADDENDUM TO
“SOME POLYNOMIALS DEFINED BY
GENERATING RELATIONS”

BY
H. M. SRIVASTAVA AND R. G. BUSCHMAN

ABSTRACT. Certain constraints are explicitly specified for the validity of a recent result involving a multivariate generating function, due to the present authors [1, p. 369, Theorem 6]. It is also indicated how this result can be further generalized. (See Theorem 6* below.)

It should be pointed out that Theorem 6 (p. 369) of [1] holds as stated if and only if

\[\lambda_j = \lambda \quad \text{and} \quad q_j = q, \quad \forall j \in \{1, \ldots, r\}, \]

where \(\lambda \) is an arbitrary constant, real or complex, and \(q \) is a positive integer.

In general, however, for arbitrary complex parameters \(\lambda_1, \ldots, \lambda_r \), and arbitrary positive integers \(q_1, \ldots, q_r \), not necessarily all equal as in equation (†) above, Theorem 6 should be replaced by

**Theorem 6*. Let the parameters \(\alpha, \beta \) and \(\lambda_1, \ldots, \lambda_r \), and the coefficients \(C(k_1, \ldots, k_r), k_j \geq 0, \forall j \in \{1, \ldots, r\} \), be arbitrary complex numbers independent of \(n \). Also let the sequence of polynomials

\[\Lambda_n^{(\alpha, \beta)}[\lambda_1, \ldots, \lambda_r; q_1, \ldots, q_r; z_1, \ldots, z_r] \]

be defined by equation (40) on p. 369 of [1] for \(n = 0, 1, 2, \ldots \), and for arbitrary positive integers \(q_1, \ldots, q_r \), independent of \(n \).

Then

\[
\sum_{n=0}^{\infty} \frac{\alpha}{\alpha + (\beta + 1)n} \left(\begin{array}{c} \alpha + (\beta + 1)n \\ n \end{array} \right) \Lambda_n^{(\alpha, \beta)}[\lambda_1, \ldots, \lambda_r; q_1, \ldots, q_r; z_1, \ldots, z_r] t^n = (1 + w)^{\alpha} H^*[\alpha, \beta; z_1(-w)^{\alpha_1}(1 + w)^{\lambda_1}, \ldots, z_r(-w)^{\alpha_r}(1 + w)^{\lambda_r}],
\]

Received by the editors August 20, 1976.

Key words and phrases. Complex parameters, multivariate generating functions, (multidimensional) polynomial sequences.

© American Mathematical Society 1977
where \(w \) is a function of \(t \) defined by equation (8) on page 361 of [1], and

\[
H^*[\alpha, \beta; u_1, \ldots, u_r] = \sum_{k_1, \ldots, k_r = 0}^{\infty} \frac{\alpha}{\sum C(k_1, \ldots, k_r) u_1^{k_1} \cdots u_r^{k_r}}
\]

with, for convenience,

\[
Q(k) = q_1 k_1 + \cdots + q_r k_r \quad \text{and} \quad \Lambda(k) = \lambda_1 k_1 + \cdots + \lambda_r k_r.
\]

Remark. Evidently, in the general case considered in [1], the above equations (41*) and (42*) would replace our earlier relationships (41) and (42), respectively.

Reference

Department of Mathematics, University of Victoria, Victoria, British Columbia, Canada V8W 2Y2

Department of Mathematics and Statistics, University of Guelph, Guelph, Ontario, Canada N1G 2W1

Department of Mathematics, University of Wyoming, Laramie, Wyoming 82071