Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On Lie algebras of vector fields


Authors: Akira Koriyama, Yoshiaki Maeda and Hideki Omori
Journal: Trans. Amer. Math. Soc. 226 (1977), 89-117
MSC: Primary 57D25; Secondary 58H05
DOI: https://doi.org/10.1090/S0002-9947-1977-0431196-5
MathSciNet review: 0431196
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper has two purposes. The first is a generalization of the theorem of Pursell-Shanks [10]. Our generalization goes by assuming the existence of a nontrivial core of a Lie algebra. However, it seems to be a necessary condition for the theorems of Pursell-Shanks type.

The second is the classification of cores under the assumption that the core itself is infinitesimally transitive at every point. As naturally expected, we have the nonelliptic, primitive infinite-dimensional Lie algebras.


References [Enhancements On Off] (What's this?)

  • [1] R. Abraham, Foundations of mechanics, Benjamin, New York, 1967. MR 36 #3527.
  • [2] I. Amemiya, Lie algebra of vector fields and complex structure, J. Math. Soc. Japan 27 (1975), 545-549. MR 0400252 (53:4087)
  • [3] V. W. Guillemin, Infinite dimensional primitive Lie algebras, J. Differential Geometry 4 (1970), 257-282. MR 42 #3132. MR 0268233 (42:3132)
  • [4] A. Koriyama, On Lie algebras of vector fields with invariant submanifolds, Nagoya Math. J. 55 (1974), 91-110. MR 0370648 (51:6874)
  • [5] B. Malgrange, Ideals of differentiable functions, Tata Inst. of Fundamental Research, Bombay; Oxford Univ. Press, London, 1967. MR 35 #3446. MR 0212575 (35:3446)
  • [6] S. Mizohata, The theory of partial differential equations, Comtemporary Math., no. 9, Iwanami, Shoten, Tokyo, 1965. MR 38 #396. MR 0232070 (38:396)
  • [7] T. Morimoto and N. Tanaka, The classification of real primitive infinite Lie algebras, J. Math. Kyoto Univ. 10 (1970), 207-243. MR 42 #3133. MR 0268234 (42:3133)
  • [8] T. Ochiai, On the automorphism group of a G-structure, J. Math. Soc. Japan 18 (1966), 189-193. MR 33 #3224. MR 0195019 (33:3224)
  • [9] H. Omori, Infinite dimensional Lie transformation groups, Lecture Notes in Math., vol. 427, Springer-Verlag, Berlin and New York, 1974. MR 0431262 (55:4263)
  • [10] L. E. Pursell and M. E. Shanks, The Lie algebra of a smooth manifold, Proc. Amer. Math. Soc. 5 (1954), 468-472. MR 16, 331. MR 0064764 (16:331a)
  • [11] S. Shnider, The classification of real primitive infintie Lie algebras, J. Differential Geometry 4 (1970), 81-89. MR 44 #2792. MR 0285574 (44:2792)
  • [12] I. M. Singer and S. Sternberg, The infinite groups of Lie and Cartan. I, J. Analyse Math. 15 (1965), 1-114. MR 36 #911. MR 0217822 (36:911)
  • [13] H. J. Sussmann, Orbits of families of vector fields and integrability of distributions, Trans. Amer. Math. Soc. 180 (1973), 171-188. MR 0321133 (47:9666)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57D25, 58H05

Retrieve articles in all journals with MSC: 57D25, 58H05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1977-0431196-5
Keywords: Cores of Lie algebras, multivalued primitive structures
Article copyright: © Copyright 1977 American Mathematical Society

American Mathematical Society