Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The periodic points of Morse-Smale endomorphisms of the circle


Author: Louis Block
Journal: Trans. Amer. Math. Soc. 226 (1977), 77-88
MSC: Primary 58F20
DOI: https://doi.org/10.1090/S0002-9947-1977-0436220-1
MathSciNet review: 0436220
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ MS({S^1})$ denote the set of continuously differentiable maps of the circle with finite nonwandering set, which satisfy certain generic properties. For $ f \in MS({S^1})$ let $ P(f)$ denote the set of positive integers which occur as the period of some periodic point of f. It is shown that for $ f \in MS({S^1})$ there are integers $ m \geqslant 1$ and $ n \geqslant 0$ such that $ P(f) = \{ m,2m,4m, \ldots ,{2^n}m\} $. Conversely, if m and n are integers, $ m \geqslant 1,n \geqslant 0$, there is a map $ f \in MS({S^1})$ with $ P(f) = \{ m,2m,4m, \ldots ,{2^n}m\} $.


References [Enhancements On Off] (What's this?)

  • [1] L. Block, Diffeomorphisms obtained from endomorphisms, Trans. Amer. Math. Soc. 214 (1975), 403-413. MR 0388457 (52:9293)
  • [2] -, Morse-Smale endomorphisms of the circle, Proc. Amer. Math. Soc. 48 (1975), 457-463. MR 0413186 (54:1305)
  • [3] L. Block and J. Franke, A classification of the structurally stable contracting endomorphisms of $ {S^1}$, Proc. Amer. Math. Soc. 36 (1972), 597-602. MR 46 #8264. MR 0309154 (46:8264)
  • [4] -, Existence of periodic points for maps of $ {S^1}$, Invent. Math. 22 (1973/74), 69-73. MR 50 #11326. MR 0358867 (50:11326)
  • [5] M. V. Jakobson, On smooth mappings of the circle into itself, Mat. Sb. (N.S.) 85 (127) (1971), 163-188 = Math. USSR Sbornik 14 (1971), 161-185. MR 44 #7587. MR 0290406 (44:7587)
  • [6] Z. Nitecki, Factorization of non-singular circle endomorphisms, Dynamical Systems (Proc. Sympos., Univ of Bahia, Salvador, Brasil, 1971), Academic Press, New York, 1973.
  • [7] -, Partitions for circle endomorphisms, Dynamical Systems (Proc. Sympos., Univ. of Bahia, Salvador, Brasil, 1971), Academic Press, New York, 1973. MR 0413189 (54:1308)
  • [8] M. Shub, Endomorphisms of compact differentiable manifolds, Amer. J. Math. 91 (1969), 175-199. MR 39 #2169. MR 0240824 (39:2169)
  • [9] S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747-817. MR 37 #3598; erratum, 39, p. 1593. MR 0228014 (37:3598)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 58F20

Retrieve articles in all journals with MSC: 58F20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1977-0436220-1
Keywords: Endomorphism, non wandering set, periodic point
Article copyright: © Copyright 1977 American Mathematical Society

American Mathematical Society