A RELATION BETWEEN TWO BIHARMONIC GREEN'S FUNCTIONS ON RIEMANNIAN MANIFOLDS

BY

DENNIS HADA(1)

ABSTRACT. The biharmonic Green's function γ whose values and Laplacian are identically zero on the boundary of a region and the biharmonic Green's function Γ whose values and normal derivative vanish on the boundary originated in the investigation of thin plates whose edges are simply supported or clamped, respectively. A relation between these two biharmonic Green's functions known for planar regions is extended to Riemannian manifolds thereby establishing that any Riemannian manifold for which γ exists must also carry Γ.

Introduction. In a paper by N. Aronszajn, the integral representation of Γ given by

$$\Gamma(x,y) = \int_D g(x,\xi)g(y,\xi)\,d\xi - \int_D g(x,\xi)k(\xi,\eta)g(y,\eta)\,d\xi\,d\eta$$

is credited to S. Zaremba (see [1, p. 387]) where g is the harmonic Green's function, k is the reproducing kernel for the square integrable harmonic functions and D is a regular subregion of the plane. (For physical interpretations of γ and Γ alluded to in the abstract, see e.g. [2, Chapter IV, particularly pp. 236, 242]. An informative discussion relating k and Γ for plane regions is given in [3] and [4, pp. 265–272].) In the present paper, we note that in this representation of Γ, the first term is none other than γ, and the second term is the reproducing kernel K for the biharmonic potentials with square integrable Laplacians w.r.t. an appropriate inner product (,). Also, in extending this relation between γ and Γ to Riemannian manifolds it is more natural to consider it as a representation of γ. Explicitly, we prove

Theorem 1. On an arbitrary Riemannian manifold, if γ exists, then K and Γ also exist. Furthermore, K and Γ are orthogonal w.r.t. (,) and γ = K + Γ.

Received by the editors September 25, 1975.

Key words and phrases. Biharmonic Green's functions, biharmonic reproducing kernel, Riemannian manifold.

(1) Supported in part by the National Science Foundation, Grant F76210F727B012, University of Hawaii.

© American Mathematical Society 1977
1. Definitions. Let R denote a Riemannian manifold, Δ its Laplace-Beltrami operator, and g^{Ω}_{x} the harmonic Green's function for a regular subregion $\Omega \subset R$ with pole $x \in \Omega$. Expressed by χ^{Ω}_{x} the biharmonic Green's function of Ω satisfying the boundary conditions

$$
\chi^{\Omega}_{x} = 0, \quad \Delta \chi^{\Omega}_{x} = 0 \quad \text{on } \partial \Omega,
$$

and by Γ^{Ω}_{x} the biharmonic Green's function of Ω satisfying

$$
\Gamma^{\Omega}_{x} = 0, \quad \frac{\partial}{\partial \nu} \Gamma^{\Omega}_{x} = 0 \quad \text{on } \partial \Omega,
$$

and where each biharmonic Green's function has a fundamental singularity at x, i.e. $\Delta \chi^{\Omega}_{x} - g^{\Omega}_{x}$ and $\Delta \Gamma^{\Omega}_{x} - g^{\Omega}_{x}$ each can be extended to a function harmonic in all of Ω. In the above, $\partial/\partial \nu$ refers to the normal derivative and ∂ is the boundary operator.

If $\{\Omega\}$ is an exhaustion of R by regular subregions, the biharmonic Green's functions χ_{x}, Γ_{x} of R are said to exist provided the limits $\chi_{x} = \lim \chi^{\Omega}_{x}$ and $\Gamma_{x} = \lim \Gamma^{\Omega}_{x}$ as $\Omega \nearrow R$ exist and are finite on $R - \{x\}$. (Throughout this paper, if there is no reference to any region, it will be understood that the region shall be the entire manifold R, e.g. $\chi_{x} = \chi_{R}^{\Omega}$, $\Gamma_{x} = \Gamma_{R}^{\Omega}$.) If χ_{x} (similarly Γ_{x}) exists for all $x \in R$, we say that R possesses the biharmonic Green's function χ (respectively Γ). The family of Riemannian manifolds void of χ or Γ is denoted by O_{χ} or O_{Γ}, respectively.

Corollary. $O_{\Gamma} \subset O_{\chi}$ (2)

2. The biharmonic Green's function γ. The class of parabolic manifolds (manifolds R void of the harmonic Green's function g, i.e. $g_{x} = \lim_{\Omega \nearrow R} g^{\Omega}_{x}$ is not finite for some $x \in R$) is customarily denoted by O_{G}. For $R \notin O_{G}$, we define a family F of real valued functions on R by

$$
F = \left\{ f \left| \int_{R} |f(\xi)| g_{x}(\xi) d\xi \text{ is well defined and finite for all } x \in R \right. \right\},
$$

and for $f \in F$ we define the function Gf on R by

$$
Gf(x) = \int_{R} f(\xi) g_{x}(\xi) d\xi = \langle f, g_{x} \rangle.
$$

The G-operator is an "inverse" for Δ in the following sense:

(i) If $f \in F$ and $Gf \in C^{2}(R)$, then $\Delta Gf = f$.

(2) Subsequent to the writing of this paper, the author has been informed that although presently unavailable in the literature, two alternative proofs of the relation $O_{\Gamma} \subset O_{\chi}$ are known—both using entirely different methods from those presented here. Furthermore, it is known that $\phi < O_{\Gamma} < O_{\chi}$ (Chung-Nakai-Ralston-Sario).
(ii) If $\varphi \in C^\infty_0$, i.e. φ is C^∞ and has compact support in R, then $G\Delta \varphi = \varphi$. (For the proof of (i) see e.g. Sario-Wang-Range [9], and for the proof of (ii) merely apply Green's identity to g and φ.)

Theorem 2. If γ exists on R, $x \in R$, then $R \notin O_G$ and

$$
\gamma_y(y) = \int_R g_x(\xi) g_y(\xi) \, d\xi \quad \text{for all } y \in R.
$$

Proof. By the Monotone Convergence Theorem, it suffices to show that for each regular subregion Ω, $x, y \in \Omega$, $\gamma_y(\Omega) = \int_\Omega g_x^\Omega(\xi) g_y^\Omega(\xi) \, d\xi$. Set $f_x(y) = \int_\Omega g_x^\Omega(\xi) g_y^\Omega(\xi) \, d\xi$; then $f_x = 0$ on $\partial \Omega$ since $g_y^\Omega = 0$ for $y \in \partial \Omega$. Furthermore, $\Delta f_x = g_x^\Omega$. To see this, we observe that for every $\varphi \in C^\infty_0(\Omega)$,

$$
\langle g_x^\Omega, \varphi \rangle_\Omega = \langle g_y^\Omega, \varphi \rangle_\Omega = \langle f_x, \Delta \varphi \rangle_\Omega = \langle \Delta f_x, \varphi \rangle_\Omega.
$$

The first equality is just property (ii) satisfied by the G-operator; the second equality comes from an application of Fubini's Theorem, and the last equality utilizes Green's identity. From $\Delta f_x = g_x^\Omega$, we see that f_x has a biharmonic singularity at x, and $\Delta f_x = 0$ on $\partial \Omega$. Hence, f_x satisfies the conditions that uniquely define γ_y, i.e.

$$
\gamma_y(\Omega) = \int_\Omega g_x^\Omega(\xi) g_y^\Omega(\xi) \, d\xi.
$$

Corollary 1. γ is positive and symmetric.

Corollary 2. If γ_x exists for some $x \in R$, then γ_y exists for all $x \in R$.

Proof. For an arbitrary $y \in R$, we must show that $\gamma_y < \infty$ assuming $\gamma_x < \infty$ for some $x \in R$. As just seen, the existence of γ_x for some x implies the existence of g_x for all x. Let Ω be a regular subregion containing both x and y. For $\xi \in R$ and distinct from x and y, let $C_1(\xi) = \langle g_y, g_x(\xi) \rangle_\Omega / \langle g_x, g_x(\xi) \rangle_\Omega$, $m = \min g_x$ and $M = \max g_y$ on $\partial \Omega$. We then have

$$
\gamma_y(\xi) = \langle g_y, g_x(\xi) \rangle_\Omega + \langle g_y, g_y(\xi) \rangle_{R-\Omega} \\
\leq C_1(\xi) \langle g_x, g_x(\xi) \rangle_\Omega + (M/m) \langle g_x, g_y(\xi) \rangle_{R-\Omega} \leq C(\xi) \gamma_y(\xi)
$$

where $C(\xi) = \max\{C_1(\xi), M/m\} < \infty$.

3. **Square integrable harmonic functions.** Let $HL^2(R)$ denote the square integrable harmonic functions on a Riemannian manifold R, and let $\|h\| = \langle h, h \rangle^{1/2}$ for $h \in HL^2(R)$.

Theorem 3. For an arbitrary Riemannian manifold R, $HL^2(R)$ is a Hilbert space. Furthermore, there exists a positive function M on R satisfying
(1) \[|h| \leq M\|h\| \text{ for all } h \in HL^2(R) \]

and for which \(M_E = \sup_{x \in E} M(x) < \infty \) for every compact \(E \subset R \).

Proof. We first consider the existence of \(M \) together with the finiteness of \(M_E \). Given compact \(E \), let \(\Omega \) be a regular subregion containing \(E \). For \(x \in E \), \(c > 0 \), let \(A_c(x) \) be the annular region

\[A_c(x) = \{ \xi \in \Omega | g_x^\Omega(\xi) < c \} \quad \text{and} \quad M_1 = \sup_{x \in E, \xi \in A_c(x)} |\text{grad}_\xi g_x^\Omega(\xi)|. \]

The finiteness of \(M_1 \) is a consequence of the continuity of \(g_x^\Omega(\xi) \) and \(|\text{grad}_\xi g_x^\Omega(\xi)| \) on \(\Omega \times \Omega \)-diagonal and the fact that

\[\sup_{x \in E, \xi \in A_c(x)} g_x^\Omega(\xi) = c. \]

We think of \(A_c(x) \) as being composed of a collection of level surfaces \(\{S_d(x)\}_{0 < d < c} \) where \(S_d(x) = \{ \xi \in \Omega | g_x^\Omega(\xi) = d \} \). If \(\alpha \) is a flow line joining \(S_{d_1}(x) \) to \(S_{d_2}(x) \), \(0 \leq d_1 < d_2 \leq c \), we have

\[d_2 - d_1 = \int_{\alpha} |\text{grad}_\xi g_x^\Omega(\xi)| dL_\xi \leq M_1 (\text{length } \alpha) \]

where \(dL_\xi \) refers to arc length. Hence, \((d_2 - d_1)/M_1 \leq \text{length } \alpha \). From this along with

\[|h(x)| \leq \int_{S_d} \left| \frac{\partial}{\partial \nu_\xi} g_x^\Omega(\xi) \right| \cdot |h(\xi)| dS_\xi, \quad x \in E, \ 0 \leq d \leq c, \]

it follows that

\[\frac{|h(x)|}{M_1} \leq M_1 \int_{A_c(x)} |h(\xi)| dV_\xi. \]

Here, \(dS_\xi \) is the surface element and \(dV_\xi \) is the volume element. Thus, by Schwarz we obtain

\[|h(x)| \leq (M_1^2/c)\sqrt{\text{vol } \Omega} \|h\| \text{ for all } x \in E, \ h \in HL^2. \]

The existence of \(M \) and the finiteness of \(M_E \) is now clear.

To see that \(HL^2 \) is a Hilbert space, let \(\{h_n\} \) be Cauchy in \(HL^2 \). By the first part of this proof just completed,

\[|h_n(x) - h_m(x)| \leq M_g \|h_n - h_m\|, \quad x \in E. \]

Hence there exists \(h \) harmonic on \(R \) for which \(h_n \rightarrow h \) uniformly on compact subsets of \(R \). In particular, \(\|h - h_n\|_E \rightarrow 0 \) as \(n \rightarrow \infty \). Also, \(\{|h_n|\} \) is bounded

\[(3) \text{ The reader might find it enlightening to compare the first part of this proof with an inequality given in [3, p. 503].} \]
since \(\{h_n\} \) is Cauchy. We conclude that \(h \in H^{1,2} \) from the inequality
\[
\|h\|_E \leq \|h - h_n\|_E + \|h_n\|
\]
by taking the limit as \(n \to \infty \) and then the supremum over all compact \(E \subset R \). To see that \(h_n \to h \) in norm, we consider the inequality
\[
\|h - h_n\| \leq \|h - h_n\|_E + \|h_N - h_n\| + \|h\|_{R-E} + \|h\|_{R-E}.
\]
Regarding the R.H.S., choose \(N \) sufficiently large so that the second term is \(\leq \epsilon/4 \) for all \(n \geq N \), then choose \(E \) so large that the sum of the last two terms \(\leq \epsilon/2 \), and finally take \(n \geq N \) and large enough that the first term \(\leq \epsilon/4 \).

We restate Theorem 3 in an equivalent form.

Theorem 3'. For an arbitrary Riemannian manifold \(R \), \(H^{1,2}(R) \) is a Hilbert space, and there exists a unique symmetric reproducing kernel \(k \in H^{1,2}(R) \) satisfying \(h = \langle h, k \rangle \) for all \(h \in H^{1,2}(R) \). Also, \(k_E = \sup_{x \in E} k_x(x) < \infty \) for each compact \(E \subset R \).

That Theorem 3' implies Theorem 3 is clear. Conversely, the existence of \(k_x \) is assured by the Riesz representation theorem for bounded functionals defined on a Hilbert space, and by (1) which says, for every \(x \in R \), evaluation is a bounded functional on \(H^{1,2} \). That \(k_E \) is finite is seen by substituting \(k_x \) into (1) thereby obtaining \(k_E \leq M^2_E \). The symmetry and uniqueness of \(k \) is confirmed in the usual manner.

Lemma 1. \(k_x(y) \) is continuous on \(R \times R \).

Proof. Fix \(x_0, y_0 \in R \) and consider the inequality
\[
|k_y(x) - k_{y_0}(x_0)| \leq |k_y(x) - k_{y_0}(x)| + |k_{y_0}(x) - k_{y_0}(x_0)|, \quad x, y \in R.
\]
On the R.H.S., the second term offers no difficulty since \(k_{y_0} \) is continuous, in fact harmonic, and we direct our attention to the first term.

Let \(U, V \) be regular subregions of \(R \). By Schwarz \(|k_x(y)|^2 \leq k_x(x)k_y(y) \) so that by Theorem 3' \(k \) is bounded on \(U \times V \). Consequently, there is no harm in assuming that \(k \) is positive on \(U \times V \). Let \(U_1 \) be a regular subregion whose closure \(\overline{U}_1 \) is contained in \(U \). For \(x \in \overline{U}_1, y, y_0 \in V \), we have
\[
k_y(x) - k_{y_0}(x) = \int_{\partial U} (k_y(\xi) - k_{y_0}(\xi)) \frac{\partial}{\partial \xi} g^U_\xi(\xi) \, dS_\xi.
\]
By the continuity of \(\partial g^U_\xi(\xi)/\partial \xi \) on \(\overline{U}_1 \times \partial U \),
\[
|k_y(x) - k_{y_0}(x)| \leq \text{const} \int_{\partial U} |k_y(\xi) - k_{y_0}(\xi)| \, dS_\xi, \quad x \in \overline{U}_1.
\]
By Harnack's inequality there exists $c > 0$ such that

$$0 < k_y(\xi) = k_\xi(y) < ck_\xi(y_0) = ck_y(\xi)$$

for all $y \in V_1 \subset V$, $\xi \in \partial U$. Therefore,

$$|k_y(\xi) - k_{y_0}(\xi)| \leq (c + 1)k_{y_0}(\xi),$$

where the R.H.S. is integrable over the ∂U. Hence the Lebesgue Dominated Convergence Theorem applies to (2), and the proof is herewith complete.

Let Ω denote a regular subregion of R and Ω' another regular subregion or possibly $\Omega' = R$.

Lemma 2. For every $x \in \Omega \subset \Omega'$,

$$0 \leq \|k_x^\Omega - k_x^{\Omega'}\|_\Omega^2 \leq k_x^\Omega(x) - k_x^{\Omega'}(x).$$

Proof. Expand $\langle k_x^\Omega - k_x^{\Omega'}, k_x^\Omega - k_x^{\Omega'} \rangle_\Omega$ and employ the reproducing properties of k_x^Ω and $k_x^{\Omega'}$.

Remark. Taking Ω' to be R, we obtain as an immediate consequence of Lemma 2 that

$$\|k_x^\Omega\|_\Omega^2 = k_x^\Omega(x) \leq k_x^\Omega(x) = \|k_x\|^2.$$

Thus, $k_x^\Omega \to k_x$ in L^2 norm which together with (1) of Theorem 3 says that the convergence is also uniform on compacta.

4. A reproducing kernel for biharmonic potentials with square integrable Laplacians. If $R \notin O_x$, then $HL^2 \subset F$. To see this, recall that in the proof of Corollary 2 in §2, for fixed $x, y \in \Omega$, $x \neq y$, $g_y \leq (M/m)g_x$ on $R - \Omega$ so that

$$||g_y||_{R-\Omega} \leq (M/m)\langle g_y, g_x \rangle_{R-\Omega} < \chi_x(y) < \infty.$$

Hence, for $h \in HL^2(R)$,

$$\int_R |h(\xi)||g_y(\xi)| d\xi = \langle |h|, g_y \rangle_{\Omega} + \langle |h|, g_y \rangle_{R-\Omega}$$

$$\leq \langle |h|, g_y \rangle_{\Omega} + \|h\| \|g_y\|_{R-\Omega} < \infty.$$

If $R \notin O_x$, by the biharmonic potentials with square integrable Laplacians, we mean $GHL^2 = \{Gh|h \in HL^2\}$. We define an inner product (\cdot, \cdot) on GHL^2 by

$$(u, v) = \langle \Delta u, \Delta v \rangle, \quad u, v \in GHL^2$$

and denote the induced norm by $\|\|$.

Theorem 4. If $R \not\in \mathcal{O}_y$, then $GHL^2(R)$ is a Hilbert space, and there exists a positive function M^R such that $|u| \leq M^R \|u\|$ for all $u \in GHL^2(R)$.

Proof. That GHL^2 is a Hilbert space is easily seen from the fact that H^2 is a Hilbert space.

For $x \in R$ and $c > 0$, let $U = \{\xi \in R|g_x(\xi) > c\}$. For $u \in GHL^2$, apply Green's identity to χ^U_x and $h - \Delta u$ thereby obtaining

$$G_u h(x) = \int_{\partial U} h(\xi) \frac{\partial \gamma^U_x(\xi)}{\partial \xi} dS_\xi.$$

From this representation together with the reasoning as given in the first part of Theorem 3, it follows that there exists $m(x) > 0$ such that $|G_u h(x)| \leq m^U(x) \|h\|_U$ for all $u \in GHL^2$. Note that $G_u h(x) = \langle h, g_x - c \rangle_U$ since $g^U_x = g_x - c$ on U. Consequently, $|\langle h, g_x - c \rangle_U| \leq m^U(x) \|h\|_U$. Therefore, we have

$$|u(x)| \leq |\langle h, g_x - c \rangle_U| + |\langle h, c \rangle_U| + |\langle h, g_x \rangle_{R-U}|$$

$$\leq m^U(x) \|h\|_U + c \sqrt{\text{Vol } U} \|h\|_U + \|g_x\|_{R-U} \|h\|_{R-U}$$

$$\leq M^R(x) \|u\|_U$$

where

$$(4) \quad M^R(x) = \max\{m^U(x) + c \sqrt{\text{Vol } U}, \|g_x\|_{R-U}\}$$

is finite and independent of u.

Theorem 4'. If $R \not\in \mathcal{O}_y$, then $GHL^2(R)$ is a Hilbert space and there exists a unique symmetric reproducing kernel $K \in GHL^2(R)$ such that $u = \langle u, K \rangle$ for all $u \in GHL^2(R)$.

Theorem 5. If $R \not\in \mathcal{O}_y$, then

$$K_x(y) = \int_{R \times R} g_x(\xi) k_x(\eta) g_y(\eta) d\xi d\eta, \quad x, y \in R.$$

Proof. Define h_x on R by $h_x(\xi) = Gk_x(\xi)$; then we claim that $h_x = \Delta K_x$.

To establish our claim, it suffices to show that $\langle \phi, h_x \rangle = \langle \phi, \Delta K_x \rangle$ for all $\phi \in C^\infty_0$. Since H^2 is a closed subspace of L^2, there exist unique $\varphi_1 \in H^2$, $\varphi_2 \in (H^2)^\perp$ such that $\varphi = \varphi_1 + \varphi_2$. Here $(H^2)^\perp$ denotes the orthogonal complement of H^2 in L^2. Therefore,
\[\langle \varphi, h_x \rangle = \int_R \varphi(\xi)G_k\xi(x) \, d\xi = \int_R \varphi(\xi) \left(\int_R k_\eta(\eta)g_x(\eta) \, d\eta \right) \, d\xi = \int_R \left(\int_R \varphi(\xi)k_\eta(\xi) \, d\xi \right)g_x(\eta) \, d\eta = \int_R \varphi(\eta)g_x(\eta) \, d\eta = G\varphi(\eta)(x). \]

The first equality is just the definition of \(h_x \), the second and last equalities come from the definition of the \(G \)-operator, the third equality is Fubini, and the fourth equality uses the reproducing property of \(k_\eta \) and the fact that \(\varphi_2 \) and \(k_\eta \) are orthogonal. On the other hand, by the orthogonality of \(\varphi_2 \) and \(\Delta K_x \), by property (i) of \(\S 2 \), by the definition of \((,) \), and by the reproducing property of \(K_x \), we have

\[\langle \varphi, \Delta K_x \rangle = \langle \varphi_1, \Delta K_x \rangle = \langle \Delta G\varphi_1, \Delta K_x \rangle = (G\varphi_1, K_x) = G\varphi_1(x), \]

which completes the proof of our claim.

Since \(K_x \in GHL^2 \) there exists \(h \in HL^2 \) such that \(K_x = Gh \). However, \(h_x = \Delta K_x = h \) so that \(K_x = Gh_x \) which when written out is the R.H.S. of our theorem.

5. Convergence of reproducing kernels for potentials. In this section, we prove the following theorem.

Theorem 6. For \(R \not\in O_\gamma \), \(K^\Omega \rightarrow K \) pointwise and in norm \(|| || \) as \(\Omega \nearrow R \).

Lemma 3. If \(R \not\in O_\gamma \), then for every \(x \in R \) \(||g_x - g_x^\Omega|| \leq 0 \) as \(\Omega \nearrow R \).

Proof. By (3) at the beginning of \(\S 4 \), \(R \not\in O_\gamma \) guarantees that \(||g_x||_{R-\Omega} < \epsilon/3 \) for given \(\epsilon > 0 \) and sufficiently large \(\Omega \). Having chosen such an \(\Omega \), choose \(c > 0 \) so small that \(\Omega \subset \Omega' \) where \(\Omega' = \{ \xi \in R|g_x(\xi) > c \} \) and \(c\sqrt{\text{vol} \Omega} < \epsilon/3 \). Consider the inequality

\[||g_x - g_x^\Omega|| < ||g_x||_{R-\Omega} + ||g_x^\Omega||_{R-\Omega} + ||g_x - g_x^\Omega||_\Omega. \]

Since \(||g_x^\Omega||_{R-\Omega} < ||g_x||_{R-\Omega} < \epsilon/3 \), the sum of the first two terms on the R.H.S. is \(< 2\epsilon/3 \). Furthermore, \(g_x - g_x^\Omega \) is harmonic on \(\Omega' \) and \(= c \) on \(\partial\Omega' \) so that \(g_x - g_x^\Omega = c \) throughout \(\Omega' \). Therefore, the last term \(= c\sqrt{\text{vol} \Omega} < \epsilon/3 \) which completes the proof.

Regarding functions which up to now were considered to be defined only on some subregion \(\Omega \) of a Riemannian manifold \(R \), we shall find it convenient to henceforth consider them to be defined on all of \(R \) by making them \(= 0 \) on the complement of \(\Omega \). In particular, by setting \(g^\Omega = 0 \) outside of \(\Omega \), we have also extended \(G_\Omega \) to be an operator on \(F(R) \)-explicitly, \(G_\Omega f(x) = 0, x \in R - \Omega, f \in F(R) \). Not only will our notation fail to distinguish between a function defined on \(\Omega \) and its trivial extension, it will continue to ignore the distinction between a function and its restriction.
Recall from the proof of Theorem 5, the function h_x given by $h_x(\xi) = Gk_\xi(x)$, and similarly define h_x^Ω by $h_x^\Omega(\xi) = G_\Omega k_\xi^\Omega(x)$. Also define $h_{\Omega,x}$ by $h_{\Omega,x}(\xi) = G_\Omega k_\xi(x)$. Considerations at the beginning of §4 assure that these functions are well defined. That $h_x \in L^2$ is clear since $h_x = \Delta K_x \in L^2$ and similarly for h_x^Ω. To show $h_{\Omega,x}$ is square integrable, we need only show that $h_x - h_{\Omega,x} \in L^2$. We note that $f = g_x - g_x^\Omega \in L^2$ by Lemma 3 and that $h_x(\xi) - h_{\Omega,x}(\xi) = \langle f, k_\xi \rangle$. Since $f = f_1 + f_2$ with $f_1 \in HL^2$ and $f_2 \in (HL^2)^\perp$, we see that $\langle f, k_\xi \rangle = f_1(\xi)$. Therefore we conclude,

$$\|h_x - h_{\Omega,x}\| = \|f_1\| \leq \|f_1\| + \|f_2\| = \|f\| = \|g_x - g_x^\Omega\| < \infty.$$

We have proven:

Lemma 4. Given $R \not\subset \Omega$, then $h_x, h_{\Omega,x} \in HL^2(R)$, and $\|h_x - h_{\Omega,x}\| \to 0$ as $\Omega \nearrow R$. In fact, $\|h_x - h_{\Omega,x}\| \leq \|g_x - g_x^\Omega\|$.

Lemma 5. For $R \not\subset \Omega$, $\|h_x - h_x^\Omega\| \to 0$ as $\Omega \nearrow R$.

Proof. Since

$$\|h_x - h_x^\Omega\| \leq \|h_x - h_{\Omega,x}\| + \|h_{\Omega,x} - h_x^\Omega\|,$$

by Lemma 4 we need only show that $\|h_{\Omega,x} - h_x^\Omega\| \to 0$ as $\Omega \nearrow R$ for every compact E. By the definitions of $h_{\Omega,x}$ and h_x^Ω, the linearity of the G_Ω-operator, Theorem 4, and Lemma 2, we have for all $\Omega \supset E$.

$$\int_E (h_{\Omega,x}(\xi) - h_x^\Omega(\xi))^2 d\xi = \int_E (G_\Omega k_\xi(x) - G_\Omega k_\xi^\Omega(x))^2 d\xi$$

$$= \int_E [G_\Omega (k_\xi - k_\xi^\Omega)]^2(x) d\xi \leq (M(x))^2 \int_E \|k_\xi - k_\xi^\Omega\|_\Omega d\xi$$

$$\leq (M(x))^2 \int_E (k_\xi(\xi) - k_\xi(\xi))^2 d\xi.$$

By (4) in §4, we see that $M(x) < M(x) < \infty$. Also, by Lemmas 1 and 2, $k_\xi^\Omega(x)$ and $k_\xi(x)$ are measurable, in fact continuous, and $k_\xi^\Omega(\xi) \sim k_\xi(\xi)$ on E so that the Monotone Convergence Theorem assures the last expression to 0 as $\Omega \nearrow R$.

Completion of the proof of Theorem 6. Subtracting and adding $\langle K_x^\Omega, K_x \rangle$ and by Schwarz, we obtain

$$|K_x(\xi) - K_x^\Omega(\xi)| \leq \|K_\xi\| \cdot \|K_x - K_x^\Omega\| + \|K_x^\Omega\| \cdot \|K_\xi - K_x^\Omega\|,$$

so that we need only show $K_x^\Omega \to K_x$ in norm. However, $\|K_x - K_x^\Omega\| = \|h_x - h_x^\Omega\| \to 0$ as $\Omega \nearrow R$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
6. Completion of the proof of Theorem 1. We first show that $\Gamma_x^\Omega = \gamma_x^\Omega - K_x^\Omega$
for each regular subregion Ω, $x \in \Omega$. Since K_x^Ω is biharmonic on Ω and γ_x^Ω has
a biharmonic singularity at $x \in \Omega$, surely $\gamma_x^\Omega - K_x^\Omega$ is biharmonic on $\Omega - \{x\}$
and possesses a biharmonic singularity at x. It is also clear that $\gamma_x^\Omega - K_x^\Omega = 0$
on $\partial \Omega$ since each term $= 0$ on $\partial \Omega$. Using this together with Green's identity, we have

$$(5) \quad \int_{\partial \Omega} h(\xi) \frac{\partial}{\partial \xi_x} (\gamma_x^\Omega(\xi) - K_x^\Omega(\xi)) dS_\xi = -\int_\Omega h(\xi) \Delta (\gamma_x^\Omega(\xi) - K_x^\Omega(\xi)) dV_\xi$$

where h is harmonic. Since $\int_\Omega h(\xi) \Delta \gamma_x^\Omega(\xi) dV_\xi = G_\Omega h(x)$ and $\int_\Omega h(\xi) \Delta K_x^\Omega(\xi) = G_\Omega h(x)$, we conclude that the R.H.S. of (5) $= 0$. Applying Green's identity
to the function $= 1$ and $\gamma_x^\Omega - K_x^\Omega$, we see that $\int_{\partial \Omega} (\partial/\partial \xi_x)(\gamma_x^\Omega(\xi) - K_x^\Omega(\xi)) dS_\xi = 0$. Hence there exists a harmonic solution to the boundary value problem
$h = (\partial/\partial \nu)(\gamma_x^\Omega - K_x^\Omega)$ on $\partial \Omega$. Substituting this solution into (5), we see that
$(\partial/\partial \nu)(\gamma_x^\Omega - K_x^\Omega) = 0$ on $\partial \Omega$, thereby verifying that $\Gamma_x^\Omega = \gamma_x^\Omega - K_x^\Omega$. Hence, if
γ exists, by Theorem 6 K exists, and $\Gamma = \lim_{\Omega \to R} (\gamma - K^\Omega) = \gamma - K$.

Lastly, K and Γ are orthogonal since

$$(K_x, \Gamma_x) = \int_R \Delta K_x(\xi)(\Delta \gamma_x(\xi) - \Delta K_x(\xi)) d\xi = K_x(x) - K_x(x) = 0.$$

In closing, I would like to hint at other applications of the methods presented. From Theorem 2, it is immediate that the existence of a positive quasiharmonic function implies the existence of γ [5]. On the other hand, it is clear that the existence of γ assures that the biharmonic functions with square integrable Laplacians possess Riesz representations [6], [9]. Since Theorem 3' guarantees that k always exists, one can define a span whose vanishing is equivalent to the nonexistence of nonzero square integrable harmonic functions [8]. Also, K may be found useful in formulating and solving a biharmonic interpolation problem similar to one known for harmonic functions [4, pp. 275–280], [7].

Bibliography

Department of Mathematics, University of Hawaii at Manoa, Honolulu, Hawaii 96822

Current address: Department of Mathematics, El Camino College, Torrance, California 90506