Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Module structure of certain induced representations of compact Lie groups
HTML articles powered by AMS MathViewer

by E. James Funderburk PDF
Trans. Amer. Math. Soc. 228 (1977), 269-285 Request permission

Abstract:

Let G be a compact connected Lie group and assume a choice of maximal torus and positive roots has been made. Given a dominant weight $\lambda$, the Borel-Weil Theorem shows how to construct a holomorphic line bundle on whose sections G acts so that the holomorphic sections provide a realization of the irreducible representation of G with highest weight $\lambda$. This paper studies the G-module structure of the space $\Gamma$ of square integrable sections of the Borel-Weil line bundle. It is found that $\Gamma = {\lim _{n \to \infty }}\Gamma (n)$, where $\Gamma (n) \subset \Gamma (n + 1) \subset \Gamma$ and $\Gamma (n)$ is isomorphic, as G-module, to \[ V(\lambda + n\lambda ) \otimes V(n{\lambda ^\ast }),\] where $V(\mu )$ denotes the irreducible representation of highest weight $\mu$, ’+’ is the Cartan semigroup operation, and ’$^\ast$’ is the contragredient operation. Similar formulas hold for powers of the Borel-Weil line bundle.
References
  • J. Frank Adams, Lectures on Lie groups, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0252560
  • L. Auslander and B. Kostant, Polarization and unitary representations of solvable Lie groups, Invent. Math. 14 (1971), 255–354. MR 293012, DOI 10.1007/BF01389744
  • J. G. T. Belinfante and B. Kolman, A survey of Lie groups and Lie algebras with applications and computational methods, SIAM, Philadelphia, 1973.
  • A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces. I, Amer. J. Math. 80 (1958), 458–538. MR 102800, DOI 10.2307/2372795
  • Claude Chevalley, Theory of Lie groups. I, Princeton University Press, Princeton, N. J., 1946 1957. MR 0082628, DOI 10.1515/9781400883851
  • L. Fonda and G. C. Ghirardi, Symmetry principles in quantum physics, Dekker, New York, 1970. J. Funderburk, Module structure of certain induced representations of compact Lie groups, Ph.D. Thesis, Univ. of Wisconsin, Madison, May, 1975.
  • James E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, Vol. 9, Springer-Verlag, New York-Berlin, 1972. MR 0323842, DOI 10.1007/978-1-4612-6398-2
  • Shoshichi Kobayashi and Katsumi Nomizu, Foundations of differential geometry. Vol. II, Interscience Tracts in Pure and Applied Mathematics, No. 15 Vol. II, Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney, 1969. MR 0238225
  • Bertram Kostant, Lie algebra cohomology and the generalized Borel-Weil theorem, Ann. of Math. (2) 74 (1961), 329–387. MR 142696, DOI 10.2307/1970237
  • Bertram Kostant, Quantization and unitary representations. I. Prequantization, Lectures in modern analysis and applications, III, Lecture Notes in Math., Vol. 170, Springer, Berlin, 1970, pp. 87–208. MR 0294568
  • Hans Samelson, Notes on Lie algebras, Van Nostrand Reinhold Mathematical Studies, No. 23, Van Nostrand Reinhold Co., New York-London-Melbourne, 1969. MR 0254112
  • J.-P. Serre, Represésentations linéaires et espaces homogènes kälériens des groupes de Lie compacts, Séminaire Bourbaki: 1953/54, Exposé 100, 2nd corr. ed., Secrétariat mathématique, Paris, 1959. MR 28 #1087.
  • J.-M. Souriau, Structure des systèmes dynamiques, Dunod, Paris, 1970 (French). Maîtrises de mathématiques. MR 0260238
  • Shlomo Sternberg, Lectures on differential geometry, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964. MR 0193578
  • Jan Tarski, Partition function for certain simple Lie algebras, J. Mathematical Phys. 4 (1963), 569–574. MR 147584, DOI 10.1063/1.1703992
  • Nolan R. Wallach, Harmonic analysis on homogeneous spaces, Pure and Applied Mathematics, No. 19, Marcel Dekker, Inc., New York, 1973. MR 0498996
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC: 22E45
  • Retrieve articles in all journals with MSC: 22E45
Additional Information
  • © Copyright 1977 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 228 (1977), 269-285
  • MSC: Primary 22E45
  • DOI: https://doi.org/10.1090/S0002-9947-1977-0439992-5
  • MathSciNet review: 0439992