Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Module structure of certain induced representations of compact Lie groups


Author: E. James Funderburk
Journal: Trans. Amer. Math. Soc. 228 (1977), 269-285
MSC: Primary 22E45
MathSciNet review: 0439992
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let G be a compact connected Lie group and assume a choice of maximal torus and positive roots has been made. Given a dominant weight $ \lambda $, the Borel-Weil Theorem shows how to construct a holomorphic line bundle on whose sections G acts so that the holomorphic sections provide a realization of the irreducible representation of G with highest weight $ \lambda $. This paper studies the G-module structure of the space $ \Gamma $ of square integrable sections of the Borel-Weil line bundle. It is found that $ \Gamma = {\lim _{n \to \infty }}\Gamma (n)$, where $ \Gamma (n) \subset \Gamma (n + 1) \subset \Gamma $ and $ \Gamma (n)$ is isomorphic, as G-module, to

$\displaystyle V(\lambda + n\lambda ) \otimes V(n{\lambda ^\ast}),$

where $ V(\mu )$ denotes the irreducible representation of highest weight $ \mu $, '+' is the Cartan semigroup operation, and '$ ^\ast$' is the contragredient operation. Similar formulas hold for powers of the Borel-Weil line bundle.

References [Enhancements On Off] (What's this?)

  • [1] J. Frank Adams, Lectures on Lie groups, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0252560
  • [2] L. Auslander and B. Kostant, Polarization and unitary representations of solvable Lie groups, Invent. Math. 14 (1971), 255–354. MR 0293012
  • [3] J. G. T. Belinfante and B. Kolman, A survey of Lie groups and Lie algebras with applications and computational methods, SIAM, Philadelphia, 1973.
  • [4] A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces. I, Amer. J. Math. 80 (1958), 458–538. MR 0102800
  • [5] Claude Chevalley, Theory of Lie groups. I, Princeton University Press, Princeton, N. J., 1946 1957. MR 0082628
  • [6] L. Fonda and G. C. Ghirardi, Symmetry principles in quantum physics, Dekker, New York, 1970.
  • [7] J. Funderburk, Module structure of certain induced representations of compact Lie groups, Ph.D. Thesis, Univ. of Wisconsin, Madison, May, 1975.
  • [8] James E. Humphreys, Introduction to Lie algebras and representation theory, Springer-Verlag, New York-Berlin, 1972. Graduate Texts in Mathematics, Vol. 9. MR 0323842
  • [9] Shoshichi Kobayashi and Katsumi Nomizu, Foundations of differential geometry. Vol. II, Interscience Tracts in Pure and Applied Mathematics, No. 15 Vol. II, Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney, 1969. MR 0238225
  • [10] Bertram Kostant, Lie algebra cohomology and the generalized Borel-Weil theorem, Ann. of Math. (2) 74 (1961), 329–387. MR 0142696
  • [11] Bertram Kostant, Quantization and unitary representations. I. Prequantization, Lectures in modern analysis and applications, III, Springer, Berlin, 1970, pp. 87–208. Lecture Notes in Math., Vol. 170. MR 0294568
  • [12] Hans Samelson, Notes on Lie algebras, Van Nostrand Reinhold Mathematical Studies, No. 23, Van Nostrand Reinhold Co., New York- London-Melbourne, 1969. MR 0254112
  • [13] J.-P. Serre, Represésentations linéaires et espaces homogènes kälériens des groupes de Lie compacts, Séminaire Bourbaki: 1953/54, Exposé 100, 2nd corr. ed., Secrétariat mathématique, Paris, 1959. MR 28 #1087.
  • [14] J.-M. Souriau, Structure des systèmes dynamiques, Ma\cflexıtrises de mathématiques, Dunod, Paris, 1970 (French). MR 0260238
  • [15] Shlomo Sternberg, Lectures on differential geometry, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964. MR 0193578
  • [16] Jan Tarski, Partition function for certain simple Lie algebras, J. Mathematical Phys. 4 (1963), 569–574. MR 0147584
  • [17] Nolan R. Wallach, Harmonic analysis on homogeneous spaces, Marcel Dekker, Inc., New York, 1973. Pure and Applied Mathematics, No. 19. MR 0498996

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 22E45

Retrieve articles in all journals with MSC: 22E45


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1977-0439992-5
Keywords: Compact connected Lie group, highest weight, lowest weight, opposition involution, Cartan semigroup, tensor product, cyclic representation, Borel-Weil realization
Article copyright: © Copyright 1977 American Mathematical Society