Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Representation theorems for nonlinear disjointly additive functionals and operators on Sobolev spaces


Authors: Moshe Marcus and Victor J. Mizel
Journal: Trans. Amer. Math. Soc. 228 (1977), 1-45
MSC: Primary 46E35; Secondary 46G99
DOI: https://doi.org/10.1090/S0002-9947-1977-0454622-4
MathSciNet review: 0454622
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: An abstract characterization is obtained for a class of nonlinear differential operators defined on the subspace $ S = {\ring{W}}_k^p[a,b]$ of the kth order Sobolev space $ W_k^p[a,b], 1 \leqslant k, 1 \leqslant p \leqslant \infty $. It is shown that every mapping $ T:S \to {L^1}[a,b]$ which is local, continuous and $ {D^k}$-disjointly additive has the form $ (Tu)(t) = H(t,{D^k}u(t))$, where $ H:[a,b] \times R \to R$ is a function obeying Carathéodory conditions as well as $ (\ast )H( \cdot ,0) = 0$. Here $ {D^k}$-disjoint additivity means $ T(u + v) = Tu + Tv$ whenever $ ({D^k}u)({D^k}v) = 0$. Likewise, every real functional N on S which is continuous and $ {D^k}$-disjointly additive has the form $ N(u) = \smallint Tu$, with T as above. Liapunov's theorem on vector measures plays a crucial role, and the analysis suggests new questions about such measures. Likewise, a new type of Radon-Nikodým theorem is employed in an essential way.


References [Enhancements On Off] (What's this?)

  • [1] R. A. Alo and A. de Korvin, Representation of Hammerstein operators by Nemytskii measures, J. Math. Anal. Appl. 52 (1975), 490-513. MR 0428145 (55:1174a)
  • [2] J. Batt, Nonlinear integral operators on $ C(S,E)$, Studia Math. 48 (1973), 145-177. MR 49 #1110. MR 0336335 (49:1110)
  • [3] D. H. Blackwell, The range of certain vector integrals, Proc. Amer. Math. Soc. 2 (1951), 390-395. MR 12, 810. MR 0041195 (12:810d)
  • [4] R. V. Chacon and N. Friedman, Additive functionals, Arch. Rational Mech. Anal. 18 (1965), 230-240. MR 30 #2329. MR 0172103 (30:2329)
  • [5] L. Drewnowski and W. Orlicz, Continuity and representation of orthogonally additive functionals, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 17 (1969), 647-653. MR 41 #806. MR 0256147 (41:806)
  • [6] P. R. Halmos, Measure theory, Van Nostrand, Princeton, N. J. 1950. MR 11, 504. MR 0033869 (11:504d)
  • [7] M. A. Krasnosel'skiĭ, Topological methods in the theory of nonlinear integral equations, GITTL, Moscow, 1956; English transl., Macmillan, New York, 1964. MR 20 #3464; 28 #2414. MR 0159197 (28:2414)
  • [8] M. A. Krasnosel'skiĭ, D. P. Zabreĭko, E. I. Pustyl'nik and P. E. Sobolevskiĭ, Integral operators in spaces of summable functions, ``Nauka", Moscow, 1966; English transl., Noordhoff, Leyden, 1976. MR 34 #6568. MR 0206751 (34:6568)
  • [9] A. Lyapunov, Sur les fonctions-vecteurs complètement additives, Izv. Akad. Nauk SSSR Ser. Mat. 4 (1940), 465-478. MR 21, 315. MR 0004080 (2:315e)
  • [10] A. D. Martin and V. J. Mizel, A representation theorem for certain nonlinear functionals, Arch. Rational Mech. Anal. 15 (1964), 353-367. MR 28 #5330. MR 0162131 (28:5330)
  • [11] V. J. Mizel, Characterization of non-linear transformations possessing kernels, Canad. J. Math. 22 (1970), 449-471. MR 41 #7495. MR 0262890 (41:7495)
  • [12] V. J. Mizel and K. Sundaresan, Representation of vector valued nonlinear functions, Trans. Amer. Math. Soc. 159 (1971), 111-127. MR 43 #5368. MR 0279647 (43:5368)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46E35, 46G99

Retrieve articles in all journals with MSC: 46E35, 46G99


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1977-0454622-4
Keywords: $ {D^k}$-disjointly additive functional, local $ {D^k}$-disjointly additive operator, normalized Carathéodory function, Liapunov vector measure, Radon-Nikodým type theorem
Article copyright: © Copyright 1977 American Mathematical Society

American Mathematical Society