Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Systems of nonlinear Volterra equations with positive definite kernels


Author: Olof J. Staffans
Journal: Trans. Amer. Math. Soc. 228 (1977), 99-116
MSC: Primary 45D05
DOI: https://doi.org/10.1090/S0002-9947-1977-0463831-X
MathSciNet review: 0463831
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the boundedness and the asymptotic behavior of the solutions of a nonlinear, $ {{\mathbf{R}}^n}$-valued Volterra equation with a positive definite kernel, generalizing earlier scalar results.


References [Enhancements On Off] (What's this?)

  • [1] V. Barbu, Integro-differential equations in Hilbert spaces. An. Şti. Univ. ``Al. I. Cuza'' Iaşi Secţ. I a Mat. 19 (1973), 365-383. MR 0402443 (53:6263)
  • [2] -, Nonlinear Volterra equations in a Hilbert space, SIAM J. Math. Anal. 6 (1975), 728-741. MR 0377620 (51:13791)
  • [3] W. F. Donoghue, Jr., Distributions and Fourier transforms. Academic Press, New York, 1969.
  • [4] J. K. Hale, Sufficient conditions for stability and instability of autonomous functional-differen- tial equations, J. Differential Equations 1 (1965), 452-482. MR 32 #1414. MR 0183938 (32:1414)
  • [5] J. J. Levin, On some geometric structures for integrodifferential equations. Advances in Math. (to appear). MR 0438063 (55:10983)
  • [6] J. J. Levin and D. F. Shea, On the asymptotic behavior of the bounded solutions of some integral equations. I, II, III, J. Math. Anal. Appl. 37 (1972), 42-82, 288-326, 537-575. MR 46 #5971. MR 0306849 (46:5971)
  • [7] S.-O. Londen, On an integral equation in a Hilbert space, SIAM J. Math. Anal. (to appear). MR 0511229 (58:23401)
  • [8] -, An existence result on a Volterra equation in a Banach space, Trans. Amer. Math. Soc. (to appear). MR 0473770 (57:13432)
  • [9] R. C. MacCamy, Nonlinear Volterra equations on a Hilbert space, J. Differential Equations 16 (1974), 373-393. MR 0377605 (51:13776)
  • [10] R. C. MacCamy and J. S. W. Wong, Stability theorems for some functional equations, Trans. Amer. Math. Soc. 164 (1972), 1-37. MR 45 #2432. MR 0293355 (45:2432)
  • [11] J. A. Nohel and D. F. Shea, Frequency domain methods for Volterra equations, Advances in Math. (to appear). MR 0500024 (58:17748)
  • [12] L. Schwartz, Théorie des distributions, new ed., Hermann, Paris, 1966. MR 35 #730. MR 0209834 (35:730)
  • [13] O. J. Staffans, Nonlinear Volterra integral equations with positive definite kernels, Proc. Amer. Math. Soc. 51 (1975), 103-108. MR 0370081 (51:6310)
  • [14] -, Positive definite measures with applications to a Volterra equation, Trans. Amer. Math. Soc. 218 (1976), 219-237. MR 0458086 (56:16289)
  • [15] -, Tauberian theorems for a positive definite form, with applications to a Volterra equation, Trans. Amer. Math. Soc. 218 (1976), 239-259. MR 0422936 (54:10921)
  • [16] -, On the asymptotic spectra of the bounded solutions of a nonlinear Volterra equation, J. Differential Equations (to appear). MR 0463855 (57:3794)
  • [17] -, An inequality for positive definite Volterra kernels, Proc. Amer. Math. Soc. 59 (1976), 205-210. MR 0500049 (58:17761)
  • [18] D. G. Weis, Note on a Volterra integro-differential equation system, Proc. Amer. Math. Soc. 45 (1974), 214-216. MR 50 # 14140. MR 0361695 (50:14140)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 45D05

Retrieve articles in all journals with MSC: 45D05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1977-0463831-X
Article copyright: © Copyright 1977 American Mathematical Society

American Mathematical Society