Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Integral representations of invariant measures


Author: Ashok Maitra
Journal: Trans. Amer. Math. Soc. 229 (1977), 209-225
MSC: Primary 28A65
DOI: https://doi.org/10.1090/S0002-9947-1977-0442197-5
MathSciNet review: 0442197
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we prove, under suitable conditions, several representation theorems for invariant measures arising out of the action of a family of measurable transformations $ \mathcal{J}$ on a measurable space $ (X,\mathcal{A})$. Our results unify and extend results of Farrell and Varadarajan on the representation of invariant measures.


References [Enhancements On Off] (What's this?)

  • [1] D. Basu, On sufficiency and invariance, Essays in Probability and Statistics (S. N. Roy Memorial Volume, R. C. Bose et al., editors), Univ. of North Carolina Press, Chapel Hill, N. C., 1970. MR 42 #1253. MR 0266347 (42:1253)
  • [2] J. R. Blum and D. L. Hanson, On invariant probability measures. I, Pacific J. Math. 10 (1960), 1125-1129. MR 24 #A3260.
  • [3] D. L. Burkholder, Sufficiency in the undominated case, Ann. Math. Statist 32 (1961), 1191-1200. MR 24 #A1139. MR 0131287 (24:A1139)
  • [4] R. H. Farrell, Representation of invariant measures, Illinois J. Math. 6 (1962), 447-467. MR 27 #265. MR 0150264 (27:265)
  • [5] D. A. Freedman and L. E. Dubins, Measurable sets of measures, Pacific J. Math. 14 (1964), 1211-1222. MR 30 #4887. MR 0174687 (30:4887)
  • [6] D. Freedman, Markov chains, Holden-Day, San Francisco, Calif., 1971. MR 45 #1263. MR 0292176 (45:1263)
  • [7] E. Hewitt and L. J. Savage, Symmetric measures on Cartesian products, Trans. Amer. Math. Soc. 80 (1955), 470-501. MR 17, 863. MR 0076206 (17:863g)
  • [8] M. Jiřna, Conditional probabilities on $ \sigma $-algebras with countable basis, Czechoslovak. Math. J. 4(79) (1954), 372-380; English transl., Selected Transl. Math. Stat. and Prob., vol. 2, Amer. Math. Soc., Providence, R. I., 1962, pp. 79-86. MR 16, 1034; 27 #812. MR 0069416 (16:1034j)
  • [9] N. Kryloff and N. Bogoliouboff, La théorie générale de la mesure dans son application a l'étude des systèmes dynamiques de la mécanique non linéaire, Ann of Math. (2) 38 (1937), 65-113. MR 1503326
  • [10] K. Kuratowski, Topology. Vol. 1, 5th ed., PWN, Warsaw; Academic Press, New York; ``Mir", Moscow, 1966. MR 36 #839, #840. MR 0259836 (41:4468)
  • [11] E. Marczewski, On compact measures, Fund. Math. 40 (1953), 113-124. MR 15, 610. MR 0059994 (15:610a)
  • [12] J. C. Oxtoby, Ergodic sets, Bull. Amer. Math. Soc. 58 (1952), 116-136, 850. MR 0047262 (13:850e)
  • [13] R. R. Phelps, Lectures on Choquet's theorem, Math. Studies, no. 7, Van Nostrand, Princeton, N. J., 1966. MR 33 #1690. MR 0193470 (33:1690)
  • [14] B. V. Rao, On Borel structures, Colloq. Math. 21 (1970), 199-204. MR 0409749 (53:13501)
  • [15] C. Ryll-Nardzewski, On quasi-compact measures, Fund. Math. 40 (1953), 125-130. MR 5, 610. MR 0059997 (15:610d)
  • [16] V. S. Varadarajan, Groups of automorphims of Borel spaces, Trans. Amer. Math. Soc. 109 (1963), 191-220. MR 28 #3139. MR 0159923 (28:3139)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 28A65

Retrieve articles in all journals with MSC: 28A65


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1977-0442197-5
Keywords: Measurable transformations, invariant measures, extreme points, sufficient $ \sigma $-fields, representability
Article copyright: © Copyright 1977 American Mathematical Society

American Mathematical Society