Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Zeroes of holomorphic vector fields and Grothendieck duality theory


Author: N. R. O’Brian
Journal: Trans. Amer. Math. Soc. 229 (1977), 289-306
MSC: Primary 58G10; Secondary 32L05
DOI: https://doi.org/10.1090/S0002-9947-1977-0445562-5
MathSciNet review: 0445562
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The holomorphic fixed point formula of Atiyah and Bott is discussed in terms of Grothendieck's theory of duality. The treatment is valid for an endomorphism of a compact complex-analytic manifold with arbitrary isolated fixed points. An expression for the fixed point indices is then derived for the case where the endomorphism belongs to the additive group generated by a holomorphic vector field with isolated zeroes. An application and some examples are given. Two generalisations of these results are also proved. The first deals with holomorphic vector bundles having sufficient homogeneity properties with respect to the action of the additive group on the base manifold, and the second with additive group actions on algebraic varieties.


References [Enhancements On Off] (What's this?)

  • [1] A. Altman and S. Kleiman, Introduction to Grothendieck duality theory, Lecture Notes in Math., vol. 146, Springer-Verlag, Berlin and New York, 1970. MR 43 #224. MR 0274461 (43:224)
  • [2] M. F. Atiyah and R. Bott, A Lefschetz fixed point formula for elliptic complexes. II, Ann. of Math. (2) 88 (1968), 451-491. MR 38 #731. MR 0232406 (38:731)
  • [3] P. F. Baum and R. Bott, On the zeroes of meromorphic vector-fields, Essays on Topology and Related Topics (A. Haefliger and R. Narasimhan, editors), Springer, New York, 1970, 29-47. MR 41 #6248. MR 0261635 (41:6248)
  • [4] R. Bott, A residue formula for holomorphic vector-fields, J. Differential Geometry 1 (1967), 311-330. MR 38 #730. MR 0232405 (38:730)
  • [5] A. Grothendieck, Théorèmes de dualité pour les faisceaux algébriques cohérents, Séminaire Bourbaki, 9ième année 1956/57, 2ième éd. corrigée, Exposé 149, Secrétariat mathématique, Paris, 1957.
  • [6] -, Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux, SGA 2, North-Holland, Amsterdam, 1968.
  • [7] R. Hartshorne, Local cohomology (A seminar by A. Grothendieck, Harvard Univ., 1961), Lecture Notes in Math., vol. 41, Springer-Verlag, Berlin and New York, 1967. MR 37 #219. MR 0224620 (37:219)
  • [8] A. Grothendieck, Eléments de géométrie algébrique, Inst. Hautes Études Sci. Publ. Math. Nos. 4, 8, 11, 17, 20, 24, 28, 32 (1960-1967). MR 36 #177a, b, c; 29 #1210; 30 #3885; 33 #7330; 36 #178; 39 #220.
  • [9] R. Hartshorne, Residues and duality, Lecture Notes in Math., vol. 20, Springer-Verlag, Berlin and New York, 1966. MR 36 #5145. MR 0222093 (36:5145)
  • [10] F. Reese Harvey, Integral formulae connected by Dolbeault's isomorphism, Complex Analysis (Proc. Conf., Rice Univ., Houston, Tex., 1969), Rice Univ. Studies 56 (1970), 77-97. MR 42 #7948. MR 0273067 (42:7948)
  • [11] F. Hirzebruch, Topological methods in algebraic geometry, Springer-Verlag, Berlin, 1956; English transl., 3rd ed., Springer-Verlag, New York, 1966. MR 18, 509; 34 #2573. MR 0202713 (34:2573)
  • [12] L. Hörmander, An introduction to complex analysis in several variables, Van Nostrand, Princeton, N. J., 1966; 2nd ed., North-Holland, Amsterdam; American Elsevier, New York, 1973. MR 34 #2933. MR 0344507 (49:9246)
  • [13] G. Horrocks, Fixed point schemes of additive group actions, Topology 8 (1969), 233-242. MR 39 #5578. MR 0244261 (39:5578)
  • [14] S. Lang, Differentiable manifolds, Addison-Wesley, Reading, Mass., 1972.
  • [15] G. Lusztig, Remarks on the holomorphic Lefschetz numbers, Analyse Globale (Séminaire, Univ. Montréal, 1969), Univ. of Montréal Press, Montréal, Que., 1971. MR 0380821 (52:1718)
  • [16] N. R. O'Brian, Zeroes of holomorphic vector fields and the Grothendieck residue, Bull. London Math. Soc. 7 (1975). MR 0374467 (51:10667)
  • [17] J.-P. Ramis and G. Ruget, Résidus et dualité, Invent. Math. 26 (1974), 89-131. MR 50 #5009. MR 0352522 (50:5009)
  • [18] L. M. Sibner and R. J. Sibner, A note on the Atiyah-Bott fixed point formula, Pacific J. Math. 53 (1974), 605-609. MR 0464326 (57:4258)
  • [19] Y. T. Siu, Techniques of extension of analytic objects. Lecture Notes in Pure and Appl. Math., vol. 8, Dekker, New York, 1974. MR 50 #13600. MR 0361154 (50:13600)
  • [20] D. Toledo, On the Atiyah-Bott formula for isolated fixed points, J. Differential Geometry 8 (1973), 401-436. MR 49 # 1539. MR 0336766 (49:1539)
  • [21] Y. L. L. Tong, Integral representation formulae and Grothendieck residue symbol, Amer. J. Math. 95 (1973), 904-917. MR 0367255 (51:3497)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 58G10, 32L05

Retrieve articles in all journals with MSC: 58G10, 32L05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1977-0445562-5
Keywords: Holomorphic fixed-point formula, Atiyah-Bott formula, holomorphic vector field, isolated degenerate fixed-point, Grothendieck duality theory, Grothendieck residue, local cohomology, Bochner-Martinelli kernel, Cauchy kernel, Todd polynomials
Article copyright: © Copyright 1977 American Mathematical Society

American Mathematical Society