Unimodality and dominance for symmetric random vectors
Author:
Marek Kanter
Journal:
Trans. Amer. Math. Soc. 229 (1977), 6585
MSC:
Primary 60E05
MathSciNet review:
0445580
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: In this paper a notion of unimodality for symmetric random vectors in is developed which is closed under convolution as well as weak convergence. A related notion of stochastic dominance for symmetric random vectors is also studied.
 [1]
T.
W. Anderson, The integral of a symmetric unimodal
function over a symmetric convex set and some probability
inequalities, Proc. Amer. Math. Soc. 6 (1955), 170–176.
MR
0069229 (16,1005a), http://dx.doi.org/10.1090/S00029939195500692291
 [2]
C.
Borell, Convex set functions in 𝑑space, Period. Math.
Hungar. 6 (1975), no. 2, 111–136. MR 0404559
(53 #8359)
 [3]
Ju.
S. Davidovič, B.
I. Korenbljum, and B.
I. Hacet, A certain property of logarithmically concave
functions, Dokl. Akad. Nauk SSSR 185 (1969),
1215–1218 (Russian). MR 0241584
(39 #2924)
 [4]
William
Feller, An introduction to probability theory and its applications.
Vol. II, John Wiley & Sons Inc., New York, 1966. MR 0210154
(35 #1048)
 [5]
Pankaj
Ghosh, On generalized unimodality, Comm. Statist.
3 (1974), 567–580. MR 0348880
(50 #1374)
 [6]
Einar
Hille and Ralph
S. Phillips, Functional analysis and semigroups, American
Mathematical Society Colloquium Publications, vol. 31, American
Mathematical Society, Providence, R. I., 1957. rev. ed. MR 0089373
(19,664d)
 [7]
I.
A. Ibragimov and Yu.
V. Linnik, Independent and stationary sequences of random
variables, WoltersNoordhoff Publishing, Groningen, 1971. With a
supplementary chapter by I. A. Ibragimov and V. V. Petrov; Translation from
the Russian edited by J. F. C. Kingman. MR 0322926
(48 #1287)
 [8]
Richard
A. Olshen and Leonard
J. Savage, A generalized unimodality, J. Appl. Probability
7 (1970), 21–34. MR 0261661
(41 #6274)
 [9]
K.
R. Parthasarathy, Probability measures on metric spaces,
Probability and Mathematical Statistics, No. 3, Academic Press Inc., New
York, 1967. MR
0226684 (37 #2271)
 [10]
András
Prékopa, On logarithmic concave measures and functions,
Acta Sci. Math. (Szeged) 34 (1973), 335–343. MR 0404557
(53 #8357)
 [11]
A.
Wayne Roberts and Dale
E. Varberg, Convex functions, Academic Press [A subsidiary of
Harcourt Brace Jovanovich, Publishers], New YorkLondon, 1973. Pure and
Applied Mathematics, Vol. 57. MR 0442824
(56 #1201)
 [12]
Michael
Schilder, Some structure theorems for the symmetric stable
laws, Ann. Math. Statist. 41 (1970), 412–421.
MR
0254915 (40 #8122)
 [13]
S.
Sherman, A theorem on convex sets with applications, Ann.
Math. Statist. 26 (1955), 763–767. MR 0074845
(17,655l)
 [14]
Adriaan
C. Zaanen, An introduction to the theory of integration,
NorthHolland Publishing Company, Amsterdam, 1958. MR 0097481
(20 #3950)
 [1]
 T. W. Anderson (1955), The integral of a symmetric unimodal function over a symmetric convex set and some probability inequalities, Proc. Amer. Math. Soc. 6, 170176. MR 16, 1005. MR 0069229 (16:1005a)
 [2]
 C. Borell (1975), Convex set functions in dspace, Period. Math. Hungar. 6, 111136. MR 0404559 (53:8359)
 [3]
 J. C. Davidovič, B. I. Korenbljum and B. I. Hacet (1969), A certain properly of logarithmically concave functions, Dokl. Akad. Nauk SSSR 185, 12151218 = Soviet Math. Dokl. 10, 477480. MR 39 #2924. MR 0241584 (39:2924)
 [4]
 W. Feller (1966), An introduction to probability theory and its applications. Vol. II, Wiley, New York. MR 35 #1048. MR 0210154 (35:1048)
 [5]
 P. Ghosh (1974), On generalized unimodality, Comm. Statist. 3, 567580. MR 50 #1374. MR 0348880 (50:1374)
 [6]
 E. Hille and R. S. Phillips (1957), Functional analysis and semigroups, Amer. Math. Soc. Colloq. Publ., vol. 31, rev. ed., Amer. Math. Soc., Providence, R. I. MR 19, 664. MR 0089373 (19:664d)
 [7]
 I. A. Ibragimov and Y. V. Linnik (1971), Independent and stationary sequences of random variables, ``Nauka", Moscow, 1965; English transl., Noordhoff, Groningen. MR 34 #2049; 48 #1287. MR 0322926 (48:1287)
 [8]
 A. R. Olshen and L. J. Savage (1970), A generalized unimodality, J. Appl. Probabilities 7, 2134. MR 41 #6274. MR 0261661 (41:6274)
 [9]
 K. R. Parthasarathy (1967), Probability measures on metric spaces, Probability and Mathematical Statistics, No. 3, Academic Press, New York and London. MR 37 #2271. MR 0226684 (37:2271)
 [10]
 A. Prékopa (1973), On logarithmically concave measures and functions, Acta. Math. Acad. Hungar. 335343. MR 0404557 (53:8357)
 [11]
 A. W. Roberts and D. E. Varberg (1973), Convex functions, Academic Press, New York. MR 0442824 (56:1201)
 [12]
 M. Schilder (1970), Some structure theorems for the symmetric stable laws, Ann. Math. Statist. 41, 412421. MR 40 # 8122. MR 0254915 (40:8122)
 [13]
 S. Sherman (1955), A theorem on convex sets with applications, Ann. Math. Statist. 26, 763767. MR 17, 655. MR 0074845 (17:655l)
 [14]
 A. C. Zaanen (1958), An introduction to the theory of integration, NorthHolland, Amsterdam. MR 20 #3950. MR 0097481 (20:3950)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
60E05
Retrieve articles in all journals
with MSC:
60E05
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029947197704455807
PII:
S 00029947(1977)04455807
Keywords:
Unimodality,
symmetric density,
convex set,
convolution,
logarithmically concave density
Article copyright:
© Copyright 1977 American Mathematical Society
