Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Unimodality and dominance for symmetric random vectors


Author: Marek Kanter
Journal: Trans. Amer. Math. Soc. 229 (1977), 65-85
MSC: Primary 60E05
DOI: https://doi.org/10.1090/S0002-9947-1977-0445580-7
MathSciNet review: 0445580
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper a notion of unimodality for symmetric random vectors in $ {R^N}$ is developed which is closed under convolution as well as weak convergence. A related notion of stochastic dominance for symmetric random vectors is also studied.


References [Enhancements On Off] (What's this?)

  • [1] T. W. Anderson (1955), The integral of a symmetric unimodal function over a symmetric convex set and some probability inequalities, Proc. Amer. Math. Soc. 6, 170-176. MR 16, 1005. MR 0069229 (16:1005a)
  • [2] C. Borell (1975), Convex set functions in d-space, Period. Math. Hungar. 6, 111-136. MR 0404559 (53:8359)
  • [3] J. C. Davidovič, B. I. Korenbljum and B. I. Hacet (1969), A certain properly of logarithmically concave functions, Dokl. Akad. Nauk SSSR 185, 1215-1218 = Soviet Math. Dokl. 10, 477-480. MR 39 #2924. MR 0241584 (39:2924)
  • [4] W. Feller (1966), An introduction to probability theory and its applications. Vol. II, Wiley, New York. MR 35 #1048. MR 0210154 (35:1048)
  • [5] P. Ghosh (1974), On generalized unimodality, Comm. Statist. 3, 567-580. MR 50 #1374. MR 0348880 (50:1374)
  • [6] E. Hille and R. S. Phillips (1957), Functional analysis and semi-groups, Amer. Math. Soc. Colloq. Publ., vol. 31, rev. ed., Amer. Math. Soc., Providence, R. I. MR 19, 664. MR 0089373 (19:664d)
  • [7] I. A. Ibragimov and Y. V. Linnik (1971), Independent and stationary sequences of random variables, ``Nauka", Moscow, 1965; English transl., Noordhoff, Groningen. MR 34 #2049; 48 #1287. MR 0322926 (48:1287)
  • [8] A. R. Olshen and L. J. Savage (1970), A generalized unimodality, J. Appl. Probabilities 7, 21-34. MR 41 #6274. MR 0261661 (41:6274)
  • [9] K. R. Parthasarathy (1967), Probability measures on metric spaces, Probability and Mathematical Statistics, No. 3, Academic Press, New York and London. MR 37 #2271. MR 0226684 (37:2271)
  • [10] A. Prékopa (1973), On logarithmically concave measures and functions, Acta. Math. Acad. Hungar. 335-343. MR 0404557 (53:8357)
  • [11] A. W. Roberts and D. E. Varberg (1973), Convex functions, Academic Press, New York. MR 0442824 (56:1201)
  • [12] M. Schilder (1970), Some structure theorems for the symmetric stable laws, Ann. Math. Statist. 41, 412-421. MR 40 # 8122. MR 0254915 (40:8122)
  • [13] S. Sherman (1955), A theorem on convex sets with applications, Ann. Math. Statist. 26, 763-767. MR 17, 655. MR 0074845 (17:655l)
  • [14] A. C. Zaanen (1958), An introduction to the theory of integration, North-Holland, Amsterdam. MR 20 #3950. MR 0097481 (20:3950)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 60E05

Retrieve articles in all journals with MSC: 60E05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1977-0445580-7
Keywords: Unimodality, symmetric density, convex set, convolution, logarithmically concave density
Article copyright: © Copyright 1977 American Mathematical Society

American Mathematical Society