Alternator and associator ideal algebras
Authors:
Irvin Roy Hentzel, Giulia Maria Piacentini Cattaneo and Denis Floyd
Journal:
Trans. Amer. Math. Soc. 229 (1977), 87109
MSC:
Primary 17E05
MathSciNet review:
0447361
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: If I is the ideal generated by all associators, , it is well known that in any nonassociative algebra . We examine nonassociative algebras where . Such algebras include algebras, Lie algebras, and, as we show, a large number of associator dependent algebras. An alternator is an associator of the type (a, a, b), (a, b, a), (b, a, a). We next study algebras where the additive span of all alternators is an ideal. These include all algebras where as well as alternative algebras. The last section deals with prime, right alternative, alternator ideal algebras satisfying an identity of the form for fixed . With two exceptions, if this algebra has an idempotent e such that , then the algebra is alternative. All our work deals with algebras with an identity element over a field of characteristic prime to 6. All our containment relations are given by identities.
 [1]
Martin
Burrow, Representation theory of finite groups, Academic
Press, New YorkLondon, 1965. MR 0231924
(38 #250)
 [2]
H. Çelik and D. Outcalt, Powerassociativity of antiflexible rings (unpublished).
 [3]
Seyoum
Getu and D.
J. Rodabaugh, Generalizing alternative rings, Comm. Algebra
2 (1974), 35–81. MR 0352195
(50 #4682)
 [4]
Irvin
Roy Hentzel, The characterization of (1, 1) rings, J. Algebra
30 (1974), 236–258. MR 0417248
(54 #5305)
 [5]
Irvin
Roy Hentzel and Giulia
Maria Piacentini Cattaneo, A note on generalizing alternative
rings, Proc. Amer. Math. Soc.
55 (1976), no. 1,
6–8. MR
0393157 (52 #13967), http://dx.doi.org/10.1090/S00029939197603931579
 [6]
Margaret
M. Humm, On a class of right alternative rings without nilpotent
ideals, J. Algebra 5 (1967), 164–174. MR 0212064
(35 #2939)
 [7]
Erwin
Kleinfeld, Right alternative rings, Proc. Amer. Math. Soc. 4 (1953), 939–944. MR 0059888
(15,595j), http://dx.doi.org/10.1090/S0002993919530059888X
 [8]
E.
Kleinfeld, F.
Kosier, J.
Marshall Osborn, and D.
Rodabaugh, The structure of associator dependent
rings, Trans. Amer. Math. Soc. 110 (1964), 473–483. MR 0157993
(28 #1221), http://dx.doi.org/10.1090/S00029947196401579932
 [9]
Armin
Thedy, Right alternative rings, J. Algebra 37
(1975), no. 1, 1–43. MR 0384888
(52 #5758)
 [1]
 M. Burrow, Representation theory of finite groups, Academic Press, New York, 1965. MR 38 #250. MR 0231924 (38:250)
 [2]
 H. Çelik and D. Outcalt, Powerassociativity of antiflexible rings (unpublished).
 [3]
 S. Getu and D. Rodabaugh, Generalizing alternative rings, Comm. Algebra 2 (1974), 3581. MR 50 #4682. MR 0352195 (50:4682)
 [4]
 I. Hentzel, The characterization of rings, J. Algebra 30 (1974), 236258. MR 0417248 (54:5305)
 [5]
 I. R. Hentzel and G. M. Piacentini Cattaneo, A note on generalizing alternative rings, Proc. Amer. Math. Soc. 55 (1976), 68. MR 0393157 (52:13967)
 [6]
 M. Humm Kleinfeld, On a class of right alternative rings without nilpotent ideals, J. Algebra 5 (1967), 164174. MR 35 #2939. MR 0212064 (35:2939)
 [7]
 E. Kleinfeld, Right alternative rings, Proc. Amer. Math. Soc. 4 (1953), 939944. MR 15, 595. MR 0059888 (15:595j)
 [8]
 E. Kleinfeld, F. Kosier, J. M. Osborn, and D. Rodabaugh, The structure of associator dependent rings, Trans. Amer. Math. Soc. 110 (1964), 473483. MR 28 #1221. MR 0157993 (28:1221)
 [9]
 A. Thedy, Right alternative rings, J. Algebra 37 (1975), 143. MR 0384888 (52:5758)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
17E05
Retrieve articles in all journals
with MSC:
17E05
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029947197704473617
PII:
S 00029947(1977)04473617
Keywords:
Associator ideal,
right alternative,
associator dependent
Article copyright:
© Copyright 1977
American Mathematical Society
