Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Distribution of eigenvalues in the presence of higher order turning points


Author: Anthony Leung
Journal: Trans. Amer. Math. Soc. 229 (1977), 111-135
MSC: Primary 34B25; Secondary 34E20
DOI: https://doi.org/10.1090/S0002-9947-1977-0447699-3
MathSciNet review: 0447699
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This article is concerned with the eigenvalue problem $ u''(x) - {\lambda ^2}p(x)u(x) = 0,u(x) \in {L_2}( - \infty ,\infty )$, where $ p(x)$ is real, analytic and possesses zeroes of arbitrary orders. Under certain conditions on $ p(x)$, approximate formulas for the eigenvalues are found. The problem considered is of interest in the study of particle scattering and wave mechanics. The formula is analogous to the quantum rule of Bohr-Sommerfeld.


References [Enhancements On Off] (What's this?)

  • [1] M. A. Evgrafov and M. V. Fedoryuk, Asymptotic behaviour of solutions of the equation $ w''(z) - p(z,\lambda )w(z) = 0$ as $ \lambda \to \infty $ in the complex z-plane, Uspehi Mat. Nauk 21 (1966), no. 1(127), 3-50 = Russian Math. Surveys 21 (1966), no. 1, 1-48. MR 35 #459. MR 0209562 (35:459)
  • [2] A. W. K. Leung, Connection formulas for asymptotic solutions of second order turning points in unbounded domains, SIAM J. Math. Anal. 4 (1973), 89-103. MR 48 #11707. MR 0333382 (48:11707)
  • [3] -, Lateral connections for asymptotic solutions around higher order turning points, J. Math. Anal. Appl. 50 (1975), 560-578. MR 0372356 (51:8572)
  • [4] Y. Sibuya, Subdominant solutions of the differential equation $ y'' - {\lambda ^2}(x - {a_1})(x - {a_2}) \cdots (x - {a_m})y = 0$, Acta. Math. 119 (1967), 235-272. MR 37 #529. MR 0224930 (37:529)
  • [5] W. Wasow, Asymptotic expansions for ordinary differential equations, Interscience, New York, 1965. MR 34 #3041. MR 0203188 (34:3041)
  • [6] Lawrence Weinberg, The asymptotic distribution of eigenvalues for the boundary value problem $ y''(x) - {\lambda ^2}p(x)y(x) = 0,y \in {L_2}( - \infty , + \infty )$, SIAM J. Math. Anal. 2 (1971), 546-566. MR 46 #5778. MR 0306656 (46:5778)
  • [7] A. Leung, Errata: ``Connection formulas for asymptotic solutions of second order turning points in unbounded domains'' (SIAM J. Math. Anal. 4 (1973), 89-103) MR 48 #11707), SIAM J. Math. Anal. 6 (1975), 600. MR 50 #13778. MR 0333382 (48:11707)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 34B25, 34E20

Retrieve articles in all journals with MSC: 34B25, 34E20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1977-0447699-3
Keywords: Linear differential equations, boundary value problem, eigenvalues, turning points, connection formulas
Article copyright: © Copyright 1977 American Mathematical Society

American Mathematical Society