Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Knot modules. I


Author: Jerome Levine
Journal: Trans. Amer. Math. Soc. 229 (1977), 1-50
MSC: Primary 57C45
DOI: https://doi.org/10.1090/S0002-9947-1977-0461518-0
MathSciNet review: 0461518
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For a differentiable knot, i.e. an imbedding $ {S^n} \subset {S^{n + 2}}$, one can associate a sequence of modules $ \{ {A_q}\} $ over the ring $ Z[t,{t^{ - 1}}]$, which are the source of many classical knot invariants. If X is the complement of the knot, and $ \tilde X \to X$ the canonical infinite cyclic covering, then $ {A_q} = {H_q}(\tilde X)$. In this work a complete algebraic characterization of these modules is given, except for the Z-torsion submodule of $ {A_1}$.


References [Enhancements On Off] (What's this?)

  • [B] R. C. Blanchfield, Intersection theory of manifolds with operators with applications to knot thoery, Ann. of Math. (2) 65 (1957), 340-356. MR 19, 53. MR 0085512 (19:53a)
  • [C] R. H. Crowell, The group $ G'/G''$ of a knot group G, Duke Math. J. 30 (1963), 349-354. MR 27 #4226. MR 0154277 (27:4226)
  • [CS] S. Cappell and J. Shaneson, On topological knots and knot cobordism, Topology 12 (1973), 33-40. MR 0321099 (47:9632)
  • [E] S. Eilenberg and H. Cartan, Homological algebra, Princeton Univ. Press, Princeton. N.J., 1956. MR 17, 1040. MR 0077480 (17:1040e)
  • [F] R. H. Fox, A quick trip through knot theory, Topology of 3-Manifolds and Related Topics (Proc. Univ. of Georgia Inst., 1961), Prentice-Hall, Englewood Cliffs, N.J., 1962, pp. 120-167. MR 25 #3522. MR 0140099 (25:3522)
  • [FS] R. H. Fox and N. Smythe, An ideal class invariant of knots, Proc. Amer. Math. Soc. 15 (1964), 707-709. MR 29 #2798. MR 0165516 (29:2798)
  • [G] M. Gutierrez, On knot modules, Invent. Math. 17 (1972), 329-335. MR 47 #9636. MR 0321103 (47:9636)
  • [H] H. Hopf, Fundamentalgruppe und zweite Bettische Gruppe, Comment. Math. Helv. 14 (1942), 257-309. MR 3, 316. MR 0006510 (3:316e)
  • [Ha] A. Haefliger, Spheres d'homotopie nouées, Séminaire Bourbaki, 1964/1965, Exposé 280, Benjamin, New York, 1966. MR 33 #54201.
  • [Hi] F. Hirzebruch, W. D. Neumann and S. S. Koh, Differentiable manifolds and quadratic forms, Dekker, New York, 1971. MR 49 #6250. MR 0341499 (49:6250)
  • [Hu] S.-T. Hu, Homotopy theory, Academic Press, New York, 1959. MR 21 #5186. MR 0106454 (21:5186)
  • [K] C. Kearton, Classification of simple knots by Blanchfield duality, Bull. Amer. Math. Soc. 79 (1973), 952-955. MR 48 #3056. MR 0324706 (48:3056)
  • [Ke] M. Kervaire, Les noeuds de dimensions suprérieures, Bull. Soc. Math. France 93 (1965), 225-271. MR 32 #6479. MR 0189052 (32:6479)
  • [Ke1] -, Geometric and algebraic intersection numbers, Comment. Math. Helv. 39 (1965), 271-280. MR 31 #4044. MR 0179802 (31:4044)
  • [KS] R. C. Kirby and L. Siebenmann, On the triangulation of manifolds and the Hauptvermutung, Bull. Amer. Math. Soc. 75 (1969), 742-749. MR 39 #3500. MR 0242166 (39:3500)
  • [L] Jerome Levine, An algebraic classification of some knots of codimension two, Comment. Math. Helv. 45 (1970), 185-198. MR 42 #1133. MR 0266226 (42:1133)
  • [L1] -, Knot modules, Knots, Groups and 3-Manifolds, Ann. of Math. Studies, no. 84, Princeton Univ. Press, Princeton, N.J., 1975. MR 0405437 (53:9230)
  • [L2] -, Unknotting spheres in codimension two, Topology 4 (1965), 9-16. MR 31 #4045. MR 0179803 (31:4045)
  • [L3] -, Polynomial invariants of knots of codimension two, Ann. of Math. (2) 84 (1966), 537-554. MR 34 #808. MR 0200922 (34:808)
  • [L4] , -, Knot cobordism groups in codimension two, Comment. Math. Helv. 44 (1969), 229-244. MR 39 #7618. MR 0246314 (39:7618)
  • [La] H. B. Lawson, Foliations, Bull. Amer. Math. Soc. 80 (1974), 369-418. MR 49 #8031. MR 0343289 (49:8031)
  • [M] J. Milnor, A duality theorem for Reidemeister torsion, Ann. of Math. (2) 76 (1962), 137-147. MR 25 #4526. MR 0141115 (25:4526)
  • [M1] -, On isometries of inner product spaces, Invent. Math. 8 (1969), 83-97. MR 40 #2764. MR 0249519 (40:2764)
  • [Ma] B. Mazur, Symmetric homology spheres, Illinois J. Math. 6 (1962), 245-250. MR 25 #3525; 26; p. 1543. MR 0140102 (25:3525)
  • [Mc] S. Mac Lane, Homology, Academic Press, New York; Springer-Verlag, Berlin, 1963. MR 28 #122. MR 1344215 (96d:18001)
  • [Mu] J. Munkres, Elementary differential topology, Ann. of Math. Studies, no. 54, Princeton Univ. Press, Princeton, N.J., 1963. MR 0163320 (29:623)
  • [S] C. Seshadri, Triviality of vector bundles over the affine space $ {K^2}$, Proc. Nat. Acad. Sci. U.S.A. 44 (1958), 456-458. MR 21 #1318. MR 0102527 (21:1318)
  • [Sc] M. Scharlemann, Non-PL imbeddings of 3-manifolds (preprint). MR 0515651 (58:24277)
  • [Se] H. Seifert and W. Threlfall, Lehrbuch der Topologie, Teubner, Leipzig, 1934.
  • [Sm] S. Smale, On the structure of manifolds, Amer. J. Math. 84 (1962), 387-399. MR 27 #2991. MR 0153022 (27:2991)
  • [T] H. Trotter, Homology of group systems with applications to knot theory, Ann. of Math. (2) 76 (1962), 464-498. MR 26 #761. MR 0143201 (26:761)
  • [T1] -, On S-equivalence of Seifert matrices, Invent. Math. 20 (1973), 173-207. MR 0645546 (58:31100)
  • [V] E. R. van Kampen, Komplexe in euklidischen Räumen, Abh. Math. Sem. Univ. Hamburg 9 (1932), 72-78.
  • [W] C. T. C. Wall, On some knotted spheres and a theorem of B. Mazur (unpublished).
  • [W1] -, Classification of $ (n - 1)$-connected 2n-manifolds, Ann. of Math. (2) 75 (1962), 163-189. MR 26 #3071. MR 0145540 (26:3071)
  • [W2] -, Classification problems in differential topology. VI: Classification of $ (s - 1)$ connected $ (2s + 1)$-manifolds, Topology 6 (1967), 273-296. MR 35 #7343. MR 0216510 (35:7343)
  • [W3] -, Quadratic forms on finite groups, and related topics, Topology 2 (1963), 281-298. MR 28 #133. MR 0156890 (28:133)
  • [W4] -, Quadratic forms on finite groups. II, Bull. London Math. Soc. 4 (1972), 156-160. MR 48 #435. MR 0322071 (48:435)
  • [W5] -, Locally flat PL submanifolds with codimension two, Proc. Cambridge Philos. Soc. 63 (1967), 5-8. MR 37 #3577. MR 0227993 (37:3577)
  • [Z] E. C. Zeeman, Twisting spun knots, Trans. Amer. Math. Soc. 115 (1965), 471-495. MR 33 #3290. MR 0195085 (33:3290)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57C45

Retrieve articles in all journals with MSC: 57C45


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1977-0461518-0
Article copyright: © Copyright 1977 American Mathematical Society

American Mathematical Society