Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Decompositions of linear maps


Author: Sze Kai J. Tsui
Journal: Trans. Amer. Math. Soc. 230 (1977), 87-112
MSC: Primary 46L05
DOI: https://doi.org/10.1090/S0002-9947-1977-0442702-9
MathSciNet review: 0442702
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In the first part we show that the decomposition of a bounded selfadjoint linear map from a $ {C^\ast}$-algebra into a given von Neumann algebra as a difference of two bounded positive linear maps is always possible if and only if that range algebra is a ``strictly finite'' von Neumann algebra of type I. In the second part we define a ``polar decomposition'' for some bounded linear maps and show that polar decomposition is possible if and only if the map satisfies a certain ``norm condition". We combine the concepts of polar and positive decompositions to show that polar decomposition for a selfadjoint map is equivalent to a strict Hahn-Jordan decomposition (see Theorems 2.2.4 and 2.2.8).


References [Enhancements On Off] (What's this?)

  • [1] W. B. Arveson, Subalgebras of $ {C^\ast}$-algebras, Acta Math. 123 (1969), 141-224. MR 40 #6274. MR 0253059 (40:6274)
  • [2] W. G. Bade, The Banach space $ C(S)$, Lecture Notes Ser., no. 26, Mat. Inst., Aarhus Univ., 1971. MR 44 #4500. MR 0287293 (44:4500)
  • [3] J. Dixmier, Les algèbres opérateurs dans l'espace hitbertien, 2nd ed., Gauthier-Villars, Paris, 1969.
  • [4] H. A. Dye and B. Russo, A note on unitary operators in $ {C^\ast}$-algebras, Duke Math. J. 33 (1966), 413-416. MR 33 #1750. MR 0193530 (33:1750)
  • [5] E. Effros and E. C. Lance, Tensor products of operator algebras (to appear). MR 0448092 (56:6402)
  • [6] J. Grosberg and M. Kreĭn, Sur la décomposition des fonctionnelles en composantes positives, C. R. (Doklady) Acad. Sci. URSS (N.S.) 25 (1939), 723-726. MR 1, 338. MR 0002019 (1:338a)
  • [7] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. No. 16 (1955). MR 17, 763. MR 0075539 (17:763c)
  • [8] R. V. Kadison, A representation theory for commutative topological algebra, Mem. Amer. Math. Soc. No. 7 (1951). MR 13, 360. MR 0044040 (13:360b)
  • [9] -, Isometries of operator algebras, Ann. of Math. (2) 54 (1951), 325-338. MR 13, 256. MR 0043392 (13:256a)
  • [10] -, Normal states and unitary equavalence of von Neumann algebras, Lecture notes, Univ. of Pennsylvania, March 1972.
  • [11] S. Kaplan, An example in the space of bounded operators from $ C(X)$ to $ C(Y)$, Proc. Amer. Math. Soc. 38 (1973), 595-597. MR 47 #7505. MR 0318959 (47:7505)
  • [12] M. G. Krein, Propriétés fondamentales des ensembles coniques normaux dans l'espace de Banach, C. R. (Doklady) Acad. Sci. URSS (N.S.) 28 (1940), 13-17. MR 2, 315. MR 0004081 (2:315f)
  • [13] E. C. Lance, On nuclear $ {C^\ast}$-algebras, J. Functional Analysis 12 (1973), 157-176. MR 49 #9640. MR 0344901 (49:9640)
  • [14] S. Lang, Algebra, Addison-Wesley, Reading, Mass., 1965. MR 33 #5416. MR 0197234 (33:5416)
  • [15] S. Sakai, $ {C^\ast}$-algebras and $ {W^\ast}$-algebras, Springer-Verlag, Berlin, 1971. MR 0442701 (56:1082)
  • [16] H. H. Schaefer, Halbgeordnete lokalkonvexe Vektorräume. II, Math. Ann. 138 (1959), 259-286. MR 21 #5135. MR 0106402 (21:5135)
  • [17] W. F. Stinespring, Positive functions on $ {C^\ast}$-algebras, Proc. Amer. Math. Soc. 6 (1955), 211-216. MR 16, 1033. MR 0069403 (16:1033b)
  • [18] Z. Takeda, Conjugate spaces of operator algebras, Proc. Japan Acad. 30 (1954), 90-95. MR 16, 146. MR 0063578 (16:146c)
  • [19] K. Yosida, Functional analysis, Academic Press, New York; Springer-Verlag, Berlin, 1965. MR 31 #5054. MR 0180824 (31:5054)
  • [20] A. W. Wickstead, Spaces of linear operators between partially ordered Banach spaces, Proc. London Math. Soc. (3) 28 (1974), 141-158. MR 48 #12150. MR 0333828 (48:12150)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46L05

Retrieve articles in all journals with MSC: 46L05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1977-0442702-9
Keywords: Positive linear maps, completely positive linear maps, positive decomposition, projective tensor product, Clifford algebra, Stonean spaces, type $ {\text{II}_1}$ von Neumann algebras, infinite von Neumann algebras, polar decomposition of linear maps, injective $ {C^\ast}$-algebras, partial isometries, norm-condition, Hahn-Jordan decomposition
Article copyright: © Copyright 1977 American Mathematical Society

American Mathematical Society