Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Almost sure behavior of linear functionals of supercritical branching processes


Author: Søren Asmussen
Journal: Trans. Amer. Math. Soc. 231 (1977), 233-248
MSC: Primary 60J80
DOI: https://doi.org/10.1090/S0002-9947-1977-0440719-1
MathSciNet review: 0440719
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The exact a.s. behavior of any linear functional $ {Z_n} \cdot a$ of a supercritical positively regular p-type $ (1 < p < \infty )$ Galton-Watson process $ \{ {Z_n}\} $ is found under a second moment hypothesis. The main new results are of iterated logarithm type, with normalizing constants depending on the decomposition of a according to the Jordan canonical form of the offspring mean matrix.


References [Enhancements On Off] (What's this?)

  • [1] S. Asmussen, Convergence rates for branching processes, Ann. Probability 4 (1976), 139-146. MR 0391286 (52:12107)
  • [2] S. Asmussen and H. Hering, Strong limit theorems for general supercritical branching processes with applications to branching diffusions, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 36 (1976), 195-212. MR 0420889 (54:8900)
  • [3] K. B. Athreya, Limit theorems for multitype continuous time Markov branching processes. I: The case of an eigenvector linear functional, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 12 (1969), 320-332. MR 40 #8134. MR 0254927 (40:8134)
  • [4] -, Limit theorems for multitype continuous time Markov branching processes. II: The case of an arbitrary linear functional, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 13 (1969), 204-214. MR 40 #8135. MR 0254928 (40:8135)
  • [5] -, Some refinements in the theory of supercritical multitype branching processes, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 20 (1971), 47-57. MR 46 #6487. MR 0307367 (46:6487)
  • [6] K. B. Athreya and P. E. Ney, Branching processes, Springer-Verlag, Berlin and New York, 1972. MR 51 #9242. MR 0373040 (51:9242)
  • [7] A. D. Barbour, Tail sums of convergent series of independent random variables, Proc. Cambridge Philos. Soc. 75 (1974), 361-364. MR 49 #4062. MR 0339303 (49:4062)
  • [8] Y. S. Chow and H. Teicher, Iterated logarithm laws for weighted averages, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 26 (1973), 87-94. MR 48 #9821. MR 0331488 (48:9821)
  • [9] H. Hering, Refined positivity theorem for semigroups generated by perturbed elliptic differential operators (to appear).
  • [10] C. C. Heyde, Some almost sure convergence theorems for branching processes, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 20 (1971), 189-192. MR 47 #5973. MR 0317426 (47:5973)
  • [11] C. C. Heyde and J. R. Leslie, Improved classical limit analogues for Galton-Watson processes with or without immigration, Bull. Austral. Math. Soc. 5 (1971), 145-155. MR 45 #2806. MR 0293731 (45:2806)
  • [12] H. Kesten and B. P. Stigum, Additional limit theorems for indecomposable multi-dimensional Galton-Watson processes, Ann. Math. Statist. 37 (1966), 1463-1481. MR 34 #864. MR 0200979 (34:864)
  • [13] J. R. Leslie, Some limit theorems for Markov branching processes, J. Appl. Probability 10 (1973), 299-306. MR 50 #5957. MR 0353474 (50:5957)
  • [14] P. Levy, Theorie de l'addition des variables aleatoires, 2ième ed., Gauthier-Villars, Paris, 1954.
  • [15] P. A. Meyer, Martingales and stochastic integrals. I, Lecture Notes in Math., vol. 284, Springer-Verlag, Berlin and New York, 1972. MR 0426145 (54:14091)
  • [16] J. Neveu, Mathematical foundations of the calculus of probability, Holden-Day, San Francisco, 1965. MR 33 #6660. MR 0198505 (33:6660)
  • [17] W. F. Stout, A martingale analogue of Kolmogorov's law of the iterated logarithm, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 15 (1970), 279-290. MR 45 #2778. MR 0293701 (45:2778)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 60J80

Retrieve articles in all journals with MSC: 60J80


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1977-0440719-1
Keywords: Galton-Watson process, multitype, supercritical, linear functional, Jordan canonical form, law of the iterated logarithm
Article copyright: © Copyright 1977 American Mathematical Society

American Mathematical Society