INEQUALITIES FOR POLYNOMIALS ON THE UNIT INTERVAL

BY

Q. I. RAHMAN AND G. SCHMEISSER

Abstract. Let \(p_n(z) = \sum_{k=0}^{n} a_k z^k \) be a polynomial of degree at most \(n \) with real coefficients. Generalizing certain results of I. Schur related to the well-known inequalities of Chebyshev and Markov we prove that if \(p_n(z) \) has at most \(n - 1 \) distinct zeros in \((-1, 1)\), then

\[
|a_n| < 2^{n-1} \left(\cos \frac{\pi}{4n} \right)^{2n} \max_{-1 < x < 1} |p_n(x)|,
\]

\[
\max_{-1 < x < 1} |p'_n(x)| < \left(n \cos \frac{\pi}{4n} \right)^2 \max_{-1 < x < 1} |p_n(x)|.
\]

1. Introduction. Let \(p_n(z) = \sum_{k=0}^{n} a_k z^k \) be a polynomial of degree at most \(n \). According to a well-known result of A. Markov [4],

\[
\max_{-1 < x < 1} |p'_n(x)| \leq n^2 \max_{-1 < x < 1} |p_n(x)|.
\]

In (1) equality holds if and only if \(p_n(z) \) is a constant multiple of \(T_n(z) \) where

\[
T_n(z) = 2^{n-1} \prod_{\nu=1}^{n} \left(z - \cos \left(\frac{\nu - \frac{1}{2}}{n} \pi \right) \right)
\]

is the so-called Chebyshev polynomial of the first kind of degree \(n \).

The influence of the location of the zeros of \(p_n(z) \) on the bound in Markov’s inequality (1) has been studied by Schur [7], Erdős [1], Eröd [2], Rahman [5], Scheick [6] and others. It was shown by Erdős [1] that if all the zeros of \(p_n(z) \) are real but lie outside \((-1, 1)\), then (1) can be replaced by

\[
\max_{-1 < x < 1} |p'_n(x)| < \frac{1}{2} en \max_{-1 < x < 1} |p_n(x)|.
\]

Scheick [6] obtained the same estimate under the weaker assumption that \(p_n(z) \) is real for real \(z \) and does not vanish in \(|z| < 1 \). Schur [7] prescribed one of the zeros of \(p_n(z) \) to lie at one of the end points of the interval \([-1, +1]\) and showed that then

Received by the editors June 11, 1975 and, in revised form, January 2, 1976.

AMS (MOS) subject classifications (1970). Primary 30A06, 30A40, 26A75; Secondary 26A84, 26A82.

Key words and phrases. Extremal problems, inequalities for polynomials, Chebyshev’s inequality, Markov’s inequality.

(1) This work was supported by National Research Council of Canada Grant A-3081.
An analogous problem concerning Bernstein’s inequality for polynomials on the unit disk was recently studied by Giroux and Rahman [3, Theorems 1, 2].

With respect to the problem considered by Schur it is natural to ask what can be said about

\[
\left(\frac{\max_{-1 < x < 1} |p''(x)|}{\max_{-1 < x < 1} |p_n(x)|} \right) / \left(\frac{\max_{-1 < x < 1} |p_n(x)|}{\max_{-1 < x < 1} |p_n(x)|} \right)
\]

if we simply assume that \(p_n(z) \) is a real polynomial of degree \(n \) having at most \(n - 1 \) distinct zeros in \((-1, 1)\). This question is answered in Theorem 1.

Improving upon the well-known estimate of Chebyshev

\[(4) \quad |a_n| \leq 2^{n-1} \max_{-1 < x < 1} |p_n(x)| \]

for the leading coefficient of a polynomial \(p_n(z) \) of degree \(n \) in terms of \(\max_{-1 < x < 1} |p_n(x)| \), Schur [7, Theorem III*] proved that if \(p_n(z) = \sum_{k=0}^{n} a_k z^k \) is a polynomial of degree \(n \) vanishing at +1 or −1, then

\[(5) \quad |a_n| \leq 2^{n-1} \left(\cos \frac{\pi}{4n} \right)^{2n} \max_{-1 < x < 1} |p_n(x)|.\]

We show that the same estimate holds (see Theorem 2 below) for all real polynomials having at most \(n - 1 \) distinct zeros in \((-1, 1)\).

2. Statement of results.

Notation. We shall denote by \(\mathcal{P}_n \) the class of all polynomials \(p_n(z) = \sum_{k=0}^{n} a_k z^k \) of degree \(n \) with real coefficients.

Theorem 1. Inequality (3) holds for all polynomials \(p_n(z) \) in \(\mathcal{P}_n \) which have at most \(n - 1 \) distinct zeros in \((-1, 1)\). Equality is attained if and only if \(p_n(z) \) is a constant multiple of

\[T_n \left(\pm \left(\cos \frac{\pi}{4n} \right)^2 z + \left(\sin \frac{\pi}{4n} \right)^2 \right). \]

In particular (3) holds for all polynomials \(p_n(z) \) in \(\mathcal{P}_n \) which vanish at +1 or −1. Here the restriction that \(p_n(z) \) has real coefficients can be easily dropped. In fact, if \(p_n(z) = \sum_{k=0}^{n} a_k z^k \) is an arbitrary polynomial of degree \(n \) vanishing at +1 or −1 and the maximum of \(|p_n'(x)| \) in \([-1, 1]\) is attained at \(x_0 \in [-1, 1] \) where \(p_n'(x_0) = |p_n(x_0)| e^{i\gamma} \), then \(A_n(z) = \sum_{k=0}^{n} \Re(a_k e^{-i\gamma}) z^k \) is a polynomial in \(\mathcal{P}_n \) vanishing at +1 or −1 with

\[\max_{-1 < x < 1} |A_n'(x)| = \max_{-1 < x < 1} |p_n'(x)|, \quad \max_{-1 < x < 1} |A_n(x)| \leq \max_{-1 < x < 1} |p_n(x)|. \]

Since by Theorem 1,

\[\max_{-1 < x < 1} |A_n'(x)| \leq \left(n \cos \frac{\pi}{4n} \right)^2 \max_{-1 < x < 1} |A_n(x)|, \]
we see that (3) holds for all polynomials $p_n(z)$ of degree n vanishing at $+1$ or -1. We thus get an alternative proof of Schur’s result in its full generality.

Note that if in Theorem 1, $p_n(z)$ is allowed to have complex coefficients, then nothing better than Markov’s result can hold.

Theorem 2. Inequality (5) holds for all polynomials $p_n(z)$ in \mathcal{P}_n which have at most $n - 1$ distinct zeros in $(-1, 1)$. Equality is attained if and only if $p_n(z)$ is a constant multiple of $T_n(\pm (\cos(\pi/4n))^2 z + (\sin(\pi/4n))^2)$.

Here again the coefficients of $p_n(z)$ cannot be allowed to be complex. Nevertheless, Schur’s result that (5) holds for all polynomials $p_n(z) = \sum_{k=0}^{n} a_k z^k$ vanishing at $+1$ or -1 can be easily deduced.

As an immediate consequence of Theorem 2, we obtain

Corollary. All the zeros of a monic polynomial $p_n(z) = z^n + \sum_{k=0}^{n-1} a_k z^k$ in \mathcal{P}_n with

$$\max_{-1 < x < 1} |p_n(x)| < 2^{1-n} \left(\cos \frac{\pi}{4n}\right)^{-2n}$$

are distinct and lie in $(-1, 1)$.

3. Lemmas.

Notation. We shall denote by \mathcal{T}_n the class of all real trigonometric polynomials

$$t(\theta) = a_0 + \sum_{\nu=1}^{n} (a_{\nu}\cos \nu \theta + b_{\nu}\sin \nu \theta)$$

with $a_n^2 + b_n^2 = 4^{1-n}$, and having a double zero at $\theta = 0$, i.e.

$$\sum_{\nu=0}^{n} a_{\nu} = 0 = \sum_{\nu=1}^{n} b_{\nu}.$$

Theorem 2 will be deduced from the following two lemmas.

Lemma 1. Let $t(\theta)$ be a trigonometric polynomial in the class \mathcal{T}_n with $\max_{-\pi < \theta < \pi} |t(\theta)| = M$. If $|t(\theta)|$ is equal to M at $2n - 1$ different points in $[-\pi, \pi)$, then

$$t(\theta) = \pm 2^{1-n} \left(\cos \frac{\pi}{4n}\right)^{-2n} T_n \left(- \left(\cos \frac{\pi}{4n}\right)^2 \cos \theta + \left(\sin \frac{\pi}{4n}\right)^2 \right),$$

where, as usual, $T_n(z)$ is the Chebyshev polynomial of the first kind of degree n.

Proof. We show first that under the assumptions of the lemma, $t(\theta)$ is a cosine polynomial. Since $t(0) = t'(0) = 0$, we see that $t(\theta)$ has exactly $2n$ critical points in $[-\pi, \pi]$, which we may list as

$$-\pi < \varphi_1 < \varphi_2 < \cdots < \varphi_{2n} < \pi.$$
where for some \(k \) (\(1 < k < 2n \)) \(\varphi_k = 0 \). Further, in each of the subintervals \([-\pi, 0)\) and \((0, \pi)\) the signs of \(t(\theta) \) at consecutive critical points are alternating (provided the subinterval in question contains at least two critical points). If \(\varphi_j \) and \(\varphi_{j+1} \) (\(j \neq k \neq j + 1 \)) are two consecutive critical points of \(t(\theta) \) such that

\[
\text{sgn} \ t(\varphi_j) = -\text{sgn} \ t(\varphi_{j+1}),
\]

and

\[
|t(\varphi_j)| = |t(\varphi_{j+1})| = \max_{-\pi < \theta < \pi} |t(\theta)|,
\]

then for every \(\epsilon \) (\(0 < \epsilon < 1 \)) the graph of \((1 - \epsilon)t(-\theta)\) crosses the graph of \(t(\theta) \) in \((\varphi_j, \varphi_{j+1})\). Hence, whatever \(k \) (\(1 < k < 2n \)) may be, \(s(\epsilon, \theta) = t(\theta) - (1 - \epsilon)t(-\theta) \) has at least \(2n - 3 \) zeros in

\[
\mathcal{E} = \{ \theta : \varphi_1 < \theta < \varphi_{2n} \} \cap \{ \theta : |\theta| > \delta \}
\]

where \(\delta \) is a suitably small positive number not depending on \(\epsilon \). As \(E \) is a closed set the number of zeros of \(s(\epsilon, \theta) \) in \(E \) cannot decrease when \(\epsilon \to 0 \). Hence \(s(\theta) = t(\theta) - t(-\theta) \) has at least \(2n - 3 \) zeros in \(E \). If \(\varphi_1 = -\pi \), then taking the periodicity of \(t(\theta) \) into account we see that one of the zeros of \(s(\epsilon, \theta) \) lying in \(E \) tends to \(-\pi\) as \(\epsilon \to 0 \), where it becomes a zero of multiplicity at least two. If \(\varphi_1 > -\pi \), then \(s(\theta) \) has at least a simple zero at \(-\pi\), since \(t(-\pi) = t(\pi) \). Besides, in any case \(s(\theta) \) has a zero of multiplicity at least three at \(\theta = 0 \). Hence \(s(\theta) \) has at least \(2n + 1 \) zeros in \([-\pi, \pi]\) if a multiple zero is counted as many times as its multiplicity. Since \(s(\theta) \) is of degree at most \(n \) this is possible only if \(s(\theta) \equiv 0 \), i.e. \(t(\theta) \) is a cosine polynomial.

A similar discussion shows that taking into account the multiplicity of the zero at \(\theta = 0 \) each of the two polynomials

\[
t(\theta) \pm 2^{1-n} \left(\cos \frac{\pi}{4n} \right)^{2n} T_n \left(-\left(\cos \frac{\pi}{4n} \right)^2 \cos \theta + \left(\sin \frac{\pi}{4n} \right)^2 \right)
\]

has at least \(2n - 1 \) zeros in \([-\pi, \pi]\). But clearly, one of these two polynomials is of degree at most \(n - 1 \), and hence must be identically zero. This completes the proof of Lemma 1.

Lemma 2. Let \(t(\theta) \) be a trigonometric polynomial in the class \(\mathcal{T}_n \) with \(\max_{-\pi < \theta < \pi} |t(\theta)| = M \). If \(|t(\theta)| \) is equal to \(M \) at less than \(2n - 1 \) different points in \([-\pi, \pi]\), then \(t(\theta) \) cannot be of smallest supremum norm in \(\mathcal{T}_n \).

Proof. We may assume that \(|t(\theta)| \) attains its maximum at exactly \(2n - 2 \) points in \([-\pi, \pi]\) with alternating signs in the subintervals \([-\pi, 0)\) and \((0, \pi)\), for otherwise we can add a trigonometric polynomial of degree less than \(n \) such that the resulting trigonometric polynomial still belongs to \(\mathcal{T}_n \), but has smaller supremum norm.
Since \(t'(\theta) \) is a real trigonometric polynomial it has an even number of zeros in \([-\pi, \pi)\). Hence either \(\xi = 0 \) is a zero of \(t(\theta) \) of multiplicity three, or else there is one (and only one) critical point \(\eta \) of \(t(\theta) \) other than 0 with \(|t(\eta)| < M \). It is easily seen that \(\xi \) and \(\eta \) must be consecutive critical points if \(t(\theta) \) is to be a trigonometric polynomial of smallest supremum norm in \(\mathcal{T}_n \). In any case, we may assume without loss of generality, that we have two consecutive critical points \(\xi = 0 \) and \(\eta \) with \(\xi < \eta \) and \(0 = |t(\xi)| < |t(\eta)| < M \). If a multiple zero is counted as many times as its multiplicity then we see that \(t(\theta) \) has a total number of \(2n \) zeros \(\theta_v \) \((1 \leq v \leq 2n)\) in \([-\pi, \pi)\), which may be arranged as

\[-\pi < \theta_1 < \theta_2 < \cdots < \theta_{2n} < \pi.\]

Putting \(\theta_0 = \theta_{2n} - 2\pi \) and \(\theta_{2n+1} = \theta_1 + 2\pi \), we have for some \(k \) \((2 < k < 2n)\),

\[\theta_{k-2} < \theta_{k-1} = \theta_k = \xi = 0 < \eta < \theta_{k+1}.\]

As

\[|t(\theta)| = 2^n \prod_{v=1}^{2n} \left| \sin \frac{\theta - \theta_v}{2} \right| = 2^{-n} \prod_{v=1}^{2n} |e^{i(\theta - \theta_v)/2} - e^{-i(\theta - \theta_v)/2}| \]

(6)

\[= 2^{-n} \prod_{v=1}^{2n} |e^{i\theta} - e^{i\theta_v}|,\]

it is sufficient to show that we can decrease the maximum modulus of \(F(z) = \prod_{v=1}^{2n} (z - e^{i\theta_v}) \) on the unit circle by moving some of the \(\theta_v \)'s on the real axis keeping \(\theta_{k-1} = \theta_k \). For this purpose we consider

\[F(\alpha, z) = \frac{D(\alpha, z)}{D(0, z)} F(z),\]

where

\[D(\alpha, z) = (z - e^{-i\alpha})^2 (z - e^{i(\theta_{k+1} + 2\alpha)}).\]

On discussing the behaviour of

\[|D(\alpha, e^{i\theta})| = 8 \left| \sin \left(\frac{\theta + \alpha}{2} \right) \right|^2 \sin \left(\frac{\theta - \theta_{k+1} - 2\alpha}{2} \right)\]

we see that, indeed, for small positive \(\alpha \),

\[\max_{|\alpha| = 1} |F(\alpha, z)| < \max_{|\alpha| = 1} |F(z)|.\]

Through the relationship (6) there corresponds to \(F(\alpha, z) \) a trigonometric polynomial \(t(\alpha, \theta) \) which is simply a translation of an element in \(\mathcal{T}_n \) and has smaller supremum norm than \(t(\theta) \).
4. Proofs of the theorems. We will prove Theorem 2 first since we shall need it for the proof of Theorem 1.

Proof of Theorem 2. We will prove the equivalent fact that if \(p_n(z) \) is a monic polynomial in \(\mathbb{P}_n \) having at most \(n - 1 \) zeros in \((-1, 1)\) and \(M = \max_{-1 < x < 1} |p_n(x)| \), then

\[
M > 2^{1-n} \left(\cos \frac{\pi}{4n} \right)^{-2n}
\]

where equality is possible if and only if \(p_n(z) = 2^{1-n} \left(\cos \frac{\pi}{4n} \right)^{-2n} P_\ast(z) \) or \(p_n(z) = (-1)^n 2^{1-n} \left(\cos \frac{\pi}{4n} \right)^{-2n} P_\ast(-z) \), where

\[
P_\ast(z) = T_n \left(\left(\cos \frac{\pi}{4n} \right) z + \left(\sin \frac{\pi}{4n} \right)^2 \right).
\]

Since \(2 > (\cos(\pi/4n))^{-2n} \) \((n > 1)\), Chebyshev's inequality (4) shows that (7) holds for all monic polynomials of degree less than \(n \). If \(p_n(z) \) has a real zero outside \([-1, 1]\) or pairs of complex conjugate zeros, \(\max_{-1 < x < 1} |p_n(x)| \) can be decreased by moving these zeros appropriately and keeping them outside the unit interval. So, we may suppose that \(p_n(z) \) is a polynomial of degree \(n \) vanishing at one of the end points of the unit interval, or having a double zero in \((-1, 1)\). Then the trigonometric polynomial \(P_n(\cos \theta) \) is also of degree \(n \) and has at least one double zero in \([-\pi, \pi)\). For a suitable choice of \(\alpha \) the trigonometric polynomial \(t(\theta) = p_n(\cos(\theta - \alpha)) \) belongs to \(\mathbb{F}_n \). Lemmas 1 and 2 show that

\[
\pm 2^{1-n} \left(\cos \frac{\pi}{4n} \right)^{-2n} P_\ast(-\cos \theta)
\]

are the only elements of smallest supremum norm in \(\mathbb{F}_n \). Hence (7) holds, with equality if and only if

\[
p_n(z) = 2^{1-n} \left(\cos \frac{\pi}{4n} \right)^{-2n} P_\ast(z) \quad \text{or} \quad p_n(z) = (-1)^n 2^{1-n} \left(\cos \frac{\pi}{4n} \right)^{-2n} P_\ast(-z).
\]

With this Theorem 2 is proved.

Proof of Theorem 1. Without loss of generality we may restrict ourselves to polynomials whose absolute value does not exceed 1 on the unit interval. Now let \(\mathcal{C} \) denote the (sub-) class consisting of all polynomials \(p_n(z) \) in \(\mathbb{P}_n \) which have at most \(n - 1 \) distinct zeros in \((-1, 1)\) and which satisfy \(|p_n(x)| < 1 \) for \(-1 < x < 1\). Then

\[
P_\ast(\pm z) = T_n \left(\pm \left(\cos \frac{\pi}{4n} \right)^2 z + \left(\sin \frac{\pi}{4n} \right)^2 \right) \in \mathcal{C}.
\]

A straightforward calculation shows that
\[\max_{-1 < x < 1} |P_n'(x)| = (n \cos(\pi/4n))^2 = P_n'(1). \]

In view of this and the fact that for a polynomial \(p_n(z) \) in \(\mathbb{P}_n \) for which \(\max_{-1 < x < 1} |P_n'(x)| < 1 \) we have [7, p. 275]

\[\max_{-1 < x < 1} |p_n'(x)| < \frac{n^2}{2} < P_n'(1) \quad (n > 2), \]

whenever \(\max_{-1 < x < 1} |p_n'(x)| \) is attained in \((-1, 1)\), it is enough to show (in order to establish Theorem 1) that \(|p_n'(1)| < (n \cos(\pi/4n))^2 = P_n'(1) \) for all \(p_n(z) \in \mathbb{C} \) with equality if and only if \(p_n(z) = \pm P_n^*(z) \).

Let \(Q_*(z) \) be a polynomial in \(\mathbb{C} \) for which

\[|Q_*(1)| = \sup_{p_n(z) \in \mathbb{C}} |p_n'(1)|. \]

Since \((n - 1)^2 < (n \cos(\pi/4n))^2 = P_n'(1) \), we see by A. Markov's theorem that \(Q_*(z) \) is of degree \(n \). Suppose

\[|Q_*(1)| > |P_n'(1)|. \]

Denote by \(\xi_1, \xi_2, \ldots, \xi_k \) the zeros (multiple zeros appearing as many times as their multiplicity) of \(Q_*(z) \) lying in \((-1, 1)\). We distinguish three cases:

Case (i). If \(k < n - 2 \), then for suitable choice of the real quantity \(\sigma \)

\[Q(z) = Q_*(z) + \sigma(z - 1)^2 \prod_{j=1}^{k} (z - \xi_j) \]

is a polynomial of degree \(n \) with \(Q'(1) = Q_*(1) \), and

\[\mu = \max_{-1 < x < 1} |Q(x)| < 1, \]

so that \(\mu^{-1}Q(z) \) belongs to \(\mathbb{C} \), but \(|\mu^{-1}Q'(1)| > |Q_*(1)| \). This contradicts (8).

Case (ii). If \(k = n - 1 \), we denote by \(\xi_n \) the (real) zero of \(Q_*(z) \) lying outside \((-1, 1)\). Note that if \(\xi_n \) were \(< -1 \) then the graph of \(P_*(1)Q_*(x)/Q_*(1) \) would cross that of \(P_*(x) \) at least \(n \) times on \([-1, 1]\). Hence the polynomial

\[S(x) = P_*(x) - \frac{P'_*(1)}{Q'_*(1)} Q_*(x), \]

which is clearly \(\neq 0 \) would have all its zeros in \([-1, 1]\) which is a contradiction since \(S'(1) = 0 \). On the other hand, the same reasoning can be used to show that in the case \(\xi_n > 1 \) the largest critical point \(\eta \) of \(Q_*(x) \) cannot be larger than 1. But if \(\eta < 1 < \xi_n \), then for sufficiently small \(\varepsilon > 0 \) the polynomial \(Q_*(z + \varepsilon) \) still belongs to \(\mathbb{C} \), and \(|Q'_*(1 + \varepsilon)| > |Q'_*(1)| \), which contradicts (8).

Case (iii). If \(k = n \), then all the zeros of \(Q_*(z) \) lie in \((-1, 1)\), and at least one of them is of multiplicity at least two. Denote by \(p \) and \(q \) the coefficients...
of \(z^n \) in \(P_*(z) \) and \(Q_*(z) \) respectively. Without loss of generality we may assume \(q > 0 \). By Theorem 2 we have \(p > q \). Since all the zeros of \(Q_*(z) \) lie in \((-1, 1)\), \(Q'_*(x) \) is monotone increasing for \(x > 1 \). We must have \(Q'_*(1) = 1 \), because otherwise for appropriate \(\epsilon > 0 \) the polynomial \(Q_*(z + \epsilon) \) would contradict the extremal property of \(Q_*(z) \). Consequently, if

\[
U(z) = P_*(z) - Q_*(z),
\]

then

\[
U(1) = 0, \quad U'(1) < 0,
\]

and \(\text{sgn } U(x) = \text{sgn } (p - q) = +1 \) for \(x \to \infty \), so that \(U(x) \) has a zero on \((1, \infty)\). Furthermore, comparing the graphs of \(P_*(x) \) and \((1 - \epsilon)Q_*(x) \) for \(\epsilon > 0 \) and letting \(\epsilon \) tend to zero, we see that \(U(x) \) has at least (and hence exactly) \(n - 1 \) zeros in \((-1, 1)\). Therefore, \(U(x) \neq 0 \) for \(x < -1 \). It follows that

\[
\text{sgn } U(x) = \text{sgn } (-1)^n(p - q) = (-1)^n \quad \text{for } x < -1,
\]

but

\[
\text{sgn } U(-1) = -\text{sgn } Q_*(-1) = (-1)^{n+1}\text{sgn } q = (-1)^{n+1},
\]

which is a contradiction.

Hence in any case \(|Q'_*(1)| = |P'_*(1)| \). Investigating the above three cases under this hypothesis, we obtain using similar reasonings that \(Q_*(x) = \pm P_*(x) \). This completes the proof of Theorem 1.

REFERENCES

2. János Eröd, On the lower bound of the maximum of certain polynomials, Mat. Fiz. Lapok. 46 (1939), 58–83. (Hungarian with German summary)