Inequalities for polynomials on the unit interval

Authors:
Q. I. Rahman and G. Schmeisser

Journal:
Trans. Amer. Math. Soc. **231** (1977), 93-100

MSC:
Primary 30A06

MathSciNet review:
0463406

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a polynomial of degree at most *n* with real coefficients. Generalizing certain results of I. Schur related to the well-known inequalities of Chebyshev and Markov we prove that if has at most distinct zeros in , then

**[1]**P. Erdös,*On extremal properties of the derivatives of polynomials*, Ann. of Math. (2)**41**(1940), 310–313. MR**0001945****[2]**János Eröd,*On the lower bound of the maximum of certain polynomials*, Mat. Fiz. Lapok.**46**(1939), 58-83. (Hungarian with German summary)**[3]**A. Giroux and Q. I. Rahman,*Inequalities for polynomials with a prescribed zero*, Trans. Amer. Math. Soc.**193**(1974), 67–98. MR**0352427**, 10.1090/S0002-9947-1974-0352427-3**[4]**A. Markov,*On a problem of D. I. Mendeleev*, Zap. Imp. Akad. Nauk**62**(1889), 1-24. (Russian)**[5]**Q. I. Rahman,*Extremal properties of the successive derivatives of polynomials and rational functions*, Math. Scand.**15**(1964), 121–130. MR**0196044****[6]**John T. Scheick,*Inequalities for derivatives of polynomials of special type*, J. Approximation Theory**6**(1972), 354–358. Collection of articles dedicated to J. L. Walsh on his 75th birthday, VIII. MR**0342909****[7]**I. Schur,*Über das Maximum des absoluten Betrages eines Polynoms in einem gegebenen Intervall*, Math. Z.**4**(1919), no. 3-4, 271–287 (German). MR**1544364**, 10.1007/BF01203015

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
30A06

Retrieve articles in all journals with MSC: 30A06

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1977-0463406-2

Keywords:
Extremal problems,
inequalities for polynomials,
Chebyshev's inequality,
Markov's inequality

Article copyright:
© Copyright 1977
American Mathematical Society