Inequalities for polynomials on the unit interval

Authors:
Q. I. Rahman and G. Schmeisser

Journal:
Trans. Amer. Math. Soc. **231** (1977), 93-100

MSC:
Primary 30A06

DOI:
https://doi.org/10.1090/S0002-9947-1977-0463406-2

MathSciNet review:
0463406

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a polynomial of degree at most *n* with real coefficients. Generalizing certain results of I. Schur related to the well-known inequalities of Chebyshev and Markov we prove that if has at most distinct zeros in , then

**[1]**P. Erdös,*On extremal properties of the derivatives of polynomials*, Ann. of Math. (2)**41**(1940), 310-313. MR**1**, 323. MR**0001945 (1:323g)****[2]**János Eröd,*On the lower bound of the maximum of certain polynomials*, Mat. Fiz. Lapok.**46**(1939), 58-83. (Hungarian with German summary)**[3]**A. Giroux and Q. I. Rahman,*Inequalities for polynomials with a prescribed zero*, Trans. Amer. Math. Soc.**193**(1974), 67-98. MR**50**#4914. MR**0352427 (50:4914)****[4]**A. Markov,*On a problem of D. I. Mendeleev*, Zap. Imp. Akad. Nauk**62**(1889), 1-24. (Russian)**[5]**Q. I. Rahman,*Extremal properties of the successive derivatives of polynomials and rational functions*, Math. Scand.**15**(1964), 121-130. MR**33**#4238. MR**0196044 (33:4238)****[6]**J. T. Scheick,*Inequalities for derivatives of polynomials of special type*, J. Approximation Theory**6**(1972), 354-358. MR**49**#7653. MR**0342909 (49:7653)****[7]**I. Schur,*Über das Maximum des absoluten Betrages eines Polynoms in einem gegebenem Intervall*, Math. Z.**4**(1919), 271-287. MR**1544364**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
30A06

Retrieve articles in all journals with MSC: 30A06

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1977-0463406-2

Keywords:
Extremal problems,
inequalities for polynomials,
Chebyshev's inequality,
Markov's inequality

Article copyright:
© Copyright 1977
American Mathematical Society