Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Multiplier criteria of Marcinkiewicz type for Jacobi expansions


Authors: George Gasper and Walter Trebels
Journal: Trans. Amer. Math. Soc. 231 (1977), 117-132
MSC: Primary 42A18
DOI: https://doi.org/10.1090/S0002-9947-1977-0467139-8
MathSciNet review: 0467139
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown how an integral representation for the product of Jacobi polynomials can be used to derive a certain integral Lipschitz type condition for the Cesàro kernel for Jacobi expansions. This result is then used to give criteria of Marcinkiewicz type for a sequence to be multiplier of type (p, p), $ 1 < p < \infty $, for Jacobi expansions.


References [Enhancements On Off] (What's this?)

  • [1] W. N. Bailey, The generating function of Jacobi polynomials, J. London Math. Soc. 13 (1938), 8-12.
  • [2] H. Bavinck and W. Trebels, On $ M_p^q$ multipliers for Jacobi expansions (to appear). MR 540293 (82c:42013)
  • [3] A. Bonami and J.-L. Clerc, Sommes de Cesàro et multiplicateurs des développements en harmoniques sphériques, Trans. Amer. Math. Soc. 183 (1973), 223-263. MR 49 #3461. MR 0338697 (49:3461)
  • [4] L. S. Bosanquet, Note on the Bohr-Hardy theorem, J. London Math. Soc. 17 (1942), 166-173. MR 4, 194. MR 0007800 (4:194h)
  • [5] R. R. Coifman and G. Weiss, Analyse harmonique non-commutative sur certains espaces homogenes, Lecture Notes in Math., vol. 242, Springer-Verlag, Berlin and New York, 1971. MR 0499948 (58:17690)
  • [6] W. C. Connett and A. L. Schwartz, A multiplier theorem for ultraspherical series, Studia Math. 51 (1974), 51-70. MR 50 #10674. MR 0358209 (50:10674)
  • [7] -, A multiplier theorem for Jacobi expansions, Studia Math. 52 (1975), 243-261. MR 0387934 (52:8772)
  • [8] A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher transcendental functions, vol. I, McGraw-Hill, New York, 1953. MR 15, 419.
  • [9] G. Gasper, Positivity and the convolution structure for Jacobi series, Ann. of Math. (2) 93 (1971), 112-118. MR 44 #1852. MR 0284628 (44:1852)
  • [10] -, Banach algebras for Jacobi series and positivity of a kernel, Ann. of Math. (2) 95 (1972), 261-280. MR 46 #9634. MR 0310536 (46:9634)
  • [11] -, Positive sums of the classical orthogonal polynomials, SIAM J. Math. Anal. (to appear). MR 0432946 (55:5925)
  • [12] L. Hörmander, Estimates for translation invariant operators in $ {L^p}$ spaces, Acta Math. 104 (1960), 93-140. MR 22 #12389. MR 0121655 (22:12389)
  • [13] T. Koornwinder, Jacobi polynomials. II, An analytic proof of the product formula, SIAM J. Math. Anal. 5 (1974), 125-137. MR 0385198 (52:6063)
  • [14] J. Marcinkiewicz, Sur les multiplicateurs des séries de Fourier, Studia Math. 8 (1939), 78-91.
  • [15] B. Muckenhoupt and E. M. Stein, Classical expansions and their relation to conjugate harmonic functions, Trans. Amer. Math. Soc. 118 (1965), 17-92. MR 33 #7779. MR 0199636 (33:7779)
  • [16] G. Szegö, Orthogonal polynomials, 3rd ed., Amer. Math. Soc. Colloq. Publ., vol. 23, Amer. Math. Soc., Providence, R.I., 1967. (1st ed., 1939; MR 1, 14)
  • [17] W. Trebels, Multipliers for $ (C,\alpha )$-bounded Fourier expansions in Banach spaces and approximation theory, Lecture Notes in Math., vol. 329, Springer-Verlag, Berlin and New York, 1973. MR 0510852 (58:23307)
  • [18] A. Zygmund, Trigonometric series, vol. 2, 2nd rev. ed., Cambridge Univ. Press, New York, 1959. MR 21 #6498. MR 0107776 (21:6498)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 42A18

Retrieve articles in all journals with MSC: 42A18


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1977-0467139-8
Keywords: Multipliers, Jacobi polynomials, ultraspherical polynomials, Cesàro kernel, Poisson kernel, fractional differences
Article copyright: © Copyright 1977 American Mathematical Society

American Mathematical Society