Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Torsion in the bordism of oriented involutions


Author: Russell J. Rowlett
Journal: Trans. Amer. Math. Soc. 231 (1977), 541-548
MSC: Primary 57D85
DOI: https://doi.org/10.1090/S0002-9947-1977-0445521-2
Erratum: Trans. Amer. Math. Soc. 248 (1979), 221-221.
MathSciNet review: 0445521
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In the bordism theory $ {\Omega _ \ast }(Z_2^k)$ of smooth, orientation-preserving $ Z_2^k$-actions all torsion has order two. Furthermore, the torsion classes inject in the unoriented theory $ {N_ \ast }(Z_2^k)$, and any class represented by a stationary-point free action has infinite order. In addition, a procedure is given for producing Smith constructions in some generality.


References [Enhancements On Off] (What's this?)

  • [1] G. E. Bredon, Introduction to compact transformation groups, Pure and Appl. Math., vol. 46, Academic Press, New York, 1972. MR 0413144 (54:1265)
  • [2] P. E. Conner and E. E. Floyd, Differentiable periodic maps, Ergebnisse Math. Grenzgebiete, Bd. 33; Springer-Verlag, Berlin; Academic Press, New York, 1964. MR 31 #750. MR 0176478 (31:750)
  • [3] F. Hirzebruch, Involutionen auf Mannigfaltigkeiten, Proc. Conf. Transformation Groups (New Orleans, 1967), Springer, New York, 1968, pp. 148-166. MR 40 #3578. MR 0250339 (40:3578)
  • [4] R. S. Palais, The classification of G-spaces, Mem. Amer. Math. Soc. No. 36 (1960). MR 0177401 (31:1664)
  • [5] H. L. Rosenzweig, Bordism of involutions on manifolds, Illinois J. Math. 16 (1972), 1-10. MR 0290386 (44:7568)
  • [6] R. J. Rowlett, Wall manifolds with involution, Trans. Amer. Math. Soc. 169 (1972), 153-162. MR 47 #2628. MR 0314076 (47:2628)
  • [7] -, Bounding a free action of a dihedral group, Michigan Math. J. 21 (1974), 363-370. MR 0377942 (51:14111)
  • [8] -, Torsion in the bordism of oriented involutions, Notices Amer. Math. Soc. 22 (1975), A227. Abstract #720-57-1.
  • [9] R. E. Stong, Notes on cobordism theory, Princeton Univ. Press, Princeton, N.J.; Univ. of Tokyo Press, Tokyo, 1968. MR 40 #2108. MR 0248858 (40:2108)
  • [10] -, Complex and oriented equivariant bordism, Topology of Manifolds (Proc. Inst., Univ. of Georgia, Athens, 1969), Markham, Chicago, 1970, pp. 291-316. MR 42 #8521. MR 0273644 (42:8521)
  • [11] -, Unoriented bordism and actions of finite groups, Mem. Amer. Math. Soc. No. 103 (1970). MR 42 #8522. MR 0273645 (42:8522)
  • [12] -, Equivariant bordism and $ {({Z_2})^k}$ actions, Duke Math. J. 37 (1970), 779-785. MR 42 #6847. MR 0271966 (42:6847)
  • [13] C. T. C. Wall, Determination of the cobordism ring, Ann. of Math. (2) 72 (1960), 292-311. MR 22 #11403. MR 0120654 (22:11403)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57D85

Retrieve articles in all journals with MSC: 57D85


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1977-0445521-2
Keywords: Orientation-preserving involution, Wall manifold, submanifold dual to a representation
Article copyright: © Copyright 1977 American Mathematical Society

American Mathematical Society