Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Nonzero-sum stochastic differential games with stopping times and free boundary problems


Authors: Alain Bensoussan and Avner Friedman
Journal: Trans. Amer. Math. Soc. 231 (1977), 275-327
MSC: Primary 93E05; Secondary 60G40, 60G10
MathSciNet review: 0453082
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: One is given a diffusion process and two payoffs which depend on the process and on two stopping times $ {\tau _1},{\tau _2}$. Two players are to choose their respective stopping times $ {\tau _1},{\tau _2}$ so as to achieve a Nash equilibrium point. The problem whether such times exist is reduced to finding a ``regular'' solution $ ({u_1},{u_2})$ of a quasi-variational inequality. Existence of a solution is established in the stationary case and, for one space dimension, in the nonstationary case; for the latter situation, the solution is shown to be regular if the game is of zero sum.


References [Enhancements On Off] (What's this?)

  • [1] Alain Bensoussan and Avner Friedman, Nonlinear variational inequalities and differential games with stopping times, J. Functional Analysis 16 (1974), 305–352. MR 0354049
  • [2] Alain Bensoussan, Maurice Goursat, and Jacques-Louis Lions, Contrôle impulsionnel et inéquations quasi-variationnelles stationnaires, C. R. Acad. Sci. Paris Sér. A-B 276 (1973), A1279–A1284 (French). MR 0317143
  • [3] A. Bensoussan and J.-L. Lions, Problèmes de temps d’arrêt optimal et inéquations variationnelles paraboliques, Applicable Anal. 3 (1973), 267–294 (French). Collection of articles dedicated to Alexander Weinstein on the occasion of his 75th birthday. MR 0449843
  • [4] A. Bensoussan and J.-L. Lions, Nouvelles méthodes en contrôle impulsionnel, Appl. Math. Optim. 1 (1974/75), no. 4, 289–312 (French, with English summary). MR 0390886
  • [5] -, Nouvelles formulations de problèmes de contrôle impulsionnel et applications, C. R. Acad. Sci. Paris Sér. A-B 276 (1973), A1189-A1192. MR 47 #5690.
  • [6] -, Contrôle impulsionnel et inéquations quasi-variationnelles d'evolution, C. R. Acad. Sci. Paris Sér. A-B 276 (1973), A1333-A1338. MR 47 #5692.
  • [7] Alain Bensoussan and Jacques-Louis Lions, Contrôle impulsionnel et systèmes d’inéquations quasi variationnelles, C. R. Acad. Sci. Paris Sér. A 278 (1974), 747–751 (French). MR 0341246
  • [8] -, Inéquations quasi-variationnelles décroisantes, Congrès d'Analyse Convexe (St. Pierre de Chartieuse, 1974), Lecture Notes in Math., Springer-Verlag,Berlin and New York (to appear).
  • [9] Haïm Brézis, Problèmes unilatéraux, J. Math. Pures Appl. (9) 51 (1972), 1–168. MR 0428137
  • [10] Haïm Brézis and Avner Friedman, Estimates on the support of solutions of parabolic variational inequalities, Illinois J. Math. 20 (1976), no. 1, 82–97. MR 0390501
  • [11] Georges Duvaut, Résolution d’un problème de Stefan (fusion d’un bloc de glace à zéro degré), C. R. Acad. Sci. Paris Sér. A-B 276 (1973), A1461–A1463 (French). MR 0328346
  • [12] Avner Friedman, Free boundary problems for parabolic equations. I. Melting of solids., J. Math. Mech. 8 (1959), 499–517. MR 0144078
  • [13] Avner Friedman, Partial differential equations of parabolic type, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964. MR 0181836
  • [14] Avner Friedman, Stochastic games and variational inequalities, Arch. Rational Mech. Anal. 51 (1973), 321–346. MR 0351571
  • [15] Avner Friedman, Regularity theorems for variational inequalities in unbounded domains and applications to stopping time problems, Arch. Rational Mech. Anal. 52 (1973), 134–160. MR 0353110
  • [16] Avner Friedman, Parabolic variational inequalities in one space dimension and smoothness of the free boundary, J. Functional Analysis 18 (1975), 151–176. MR 0477461
  • [17] Avner Friedman, The shape and smoothness of the free boundary for some elliptic variational inequalities, Indiana Univ. Math. J. 25 (1976), no. 2, 103–118. MR 0393806
  • [18] Avner Friedman, A problem in hydraulics with non-monotone free boundary, Indiana Univ. Math. J. 25 (1976), no. 6, 577–592. MR 0425358
  • [19] Avner Friedman and David Kinderlehrer, A one phase Stefan problem, Indiana Univ. Math. J. 24 (1974/75), no. 11, 1005–1035. MR 0385326
  • [20] Avner Friedman and David Kinderlehrer, A class of parabolic quasi-variational inequalities, J. Differential Equations 21 (1976), no. 2, 395–416. MR 0415069
  • [21] J.-L. Lions and G. Stampacchia, Variational inequalities, Comm. Pure Appl. Math. 20 (1967), 493–519. MR 0216344
  • [22] V. A. Solonnikov, A priori estimates for solutions of second-order equations of parabolic type, Trudy Mat. Inst. Steklov. 70 (1964), 133–212 (Russian). MR 0162065
  • [23] Luc Tartar, Inéquations quasi variationnelles abstraites, C. R. Acad. Sci. Paris Sér. A 278 (1974), 1193–1196 (French). MR 0344964
  • [24] Pierre van Moerbeke, An optimal stopping problem with linear reward, Acta Math. 132 (1974), 111–151. MR 0376225

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 93E05, 60G40, 60G10

Retrieve articles in all journals with MSC: 93E05, 60G40, 60G10


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1977-0453082-7
Keywords: Stochastic differential games, stochastic differential equations, stopping time, payoff, Nash point, variational inequality, quasi-variational inequality, free boundary problem, nonzero-sum game, zero-sum game
Article copyright: © Copyright 1977 American Mathematical Society