Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Nonzero-sum stochastic differential games with stopping times and free boundary problems


Authors: Alain Bensoussan and Avner Friedman
Journal: Trans. Amer. Math. Soc. 231 (1977), 275-327
MSC: Primary 93E05; Secondary 60G40, 60G10
DOI: https://doi.org/10.1090/S0002-9947-1977-0453082-7
MathSciNet review: 0453082
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: One is given a diffusion process and two payoffs which depend on the process and on two stopping times $ {\tau _1},{\tau _2}$. Two players are to choose their respective stopping times $ {\tau _1},{\tau _2}$ so as to achieve a Nash equilibrium point. The problem whether such times exist is reduced to finding a ``regular'' solution $ ({u_1},{u_2})$ of a quasi-variational inequality. Existence of a solution is established in the stationary case and, for one space dimension, in the nonstationary case; for the latter situation, the solution is shown to be regular if the game is of zero sum.


References [Enhancements On Off] (What's this?)

  • [1] A. Bensoussan and A. Friedman, Nonlinear variational inequalities and differential games with stopping times, J. Functional Analysis 16 (1974), 305-352. MR 50 #6531. MR 0354049 (50:6531)
  • [2] A. Bensoussan, M. Goursat and J. L. Lions, Contrôle impulsionnel et inéquations quasi-variationnelles stationnaires, C. R. Acad. Sci. Paris Sér. A-B 276 (1973), A1279-A1284. MR 47 #5691. MR 0317143 (47:5691)
  • [3] A. Bensoussan and J. L. Lions, Problèmes de temps d'arrèt optimal et inéquations variationelles paraboliques, Applicable Anal. 3 (1973), 267-295. MR 0449843 (56:8144)
  • [4] -, Nouvelles méthodes en contrôle impulsionnel, J. Appl. Math. and Optimization 1 (1975), 289-312. MR 0390886 (52:11709)
  • [5] -, Nouvelles formulations de problèmes de contrôle impulsionnel et applications, C. R. Acad. Sci. Paris Sér. A-B 276 (1973), A1189-A1192. MR 47 #5690.
  • [6] -, Contrôle impulsionnel et inéquations quasi-variationnelles d'evolution, C. R. Acad. Sci. Paris Sér. A-B 276 (1973), A1333-A1338. MR 47 #5692.
  • [7] -, Contrôle impulsionnel et systèmes d'inéquations quasi-variationnelles, C. R. Acad. Sci. Paris Sér. A 278 (1974), 747-751. MR 49 #5996. MR 0341246 (49:5996)
  • [8] -, Inéquations quasi-variationnelles décroisantes, Congrès d'Analyse Convexe (St. Pierre de Chartieuse, 1974), Lecture Notes in Math., Springer-Verlag,Berlin and New York (to appear).
  • [9] H. Brezis, Problèmes unilatéraux, J. Math. Pures Appl. 51 (1972), 1-168. MR 0428137 (55:1166)
  • [10] H. Brezis and A. Friedman, Estimates on the support of solutions of parabolic variational inequalities, Illinois J. Math. 20 (1976), 82-97. MR 0390501 (52:11327)
  • [11] G. Duvaut, Résolution d'un problème de Stefan (fusion d'un bloc de glace à zéro degré), C. R. Acad. Sci. Paris Sér. A-B. 276 (1973), A1461-A1463. MR 48 #6688. MR 0328346 (48:6688)
  • [12] A. Friedman, Free boundary problems for parabolic equations. I. Melting of solids, J. Math. and Mech. 8 (1959), 499-517. MR 26 #1626. MR 0144078 (26:1626)
  • [13] -, Partial differential equations of parabolic type, Prentice-Hall, Englewood Cliffs, N. J., 1964. MR 31 #6062. MR 0181836 (31:6062)
  • [14] -, Stochastic games and variational inequalities, Arch. Rational Mech. Anal. 51 (1973), 321-346. MR 50 #4059. MR 0351571 (50:4059)
  • [15] -, Regularity theorem for variational inequalities in unbounded domains and applications to stopping time problems, Arch. Rational Mech. Anal. 52 (1973), 134-160. MR 50 #5596. MR 0353110 (50:5596)
  • [16] -, Parabolic variational inequalities in one space dimension and smoothness of the free boundary, J. Functional Analysis 18 (1975), 151-176. MR 0477461 (57:16988)
  • [17] -, The shape and smoothness of the free boundary for some elliptic variational inequalities, Indiana Univ. Math. J. 25 (1976), 103-118. MR 0393806 (52:14614)
  • [18] -, A problem in hydraulics with non-monotone free boundary, Indiana Univ. Math. J. 25 (1976), 577-592. MR 0425358 (54:13314)
  • [19] A. Friedman and D. Kinderlehrer, A one phase Stefan problem, Indiana Univ. Math. J. 24 (1975), 1005-1035. MR 0385326 (52:6190)
  • [20] -, A class of parabolic quasi-variational inequalities, J. Differential Equations 21 (1976), 395-416. MR 0415069 (54:3160)
  • [21] J.-L. Lions and G. Stampacchia, Variational inequalities, Comm. Pure Appl. Math. 20 (1967), 493-519. MR 35 #7178. MR 0216344 (35:7178)
  • [22] V. A. Solonnikov, A priori estimates for second-order parabolic equations, Trudy Mat. Inst. Steklov. 70 (1964), 133-212; English transl., Amer. Math. Soc. Transl. (2) 65 (1967), 51-137. MR 28 #5267. MR 0162065 (28:5267)
  • [23] L. Tartar, Inéquations quasi varialionnelles abstraites, C. R. Acad. Sci. Paris Sér. A 278 (1974), 1193-1196. MR 49 #9703. MR 0344964 (49:9703)
  • [24] P. Van Moerbeke, An optional stopping time problem for linear reward, Acta Math. 132 (1974), 1-41. MR 0376225 (51:12405)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 93E05, 60G40, 60G10

Retrieve articles in all journals with MSC: 93E05, 60G40, 60G10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1977-0453082-7
Keywords: Stochastic differential games, stochastic differential equations, stopping time, payoff, Nash point, variational inequality, quasi-variational inequality, free boundary problem, nonzero-sum game, zero-sum game
Article copyright: © Copyright 1977 American Mathematical Society

American Mathematical Society