Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Anisotropic $ H\sp{p}$ real interpolation, and fractional Riesz potentials


Author: W. R. Madych
Journal: Trans. Amer. Math. Soc. 232 (1977), 255-263
MSC: Primary 46E35
DOI: https://doi.org/10.1090/S0002-9947-1977-0450961-1
MathSciNet review: 0450961
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We observe that the anisotropic variants of $ {H^p}$ interpolate by the real method in the usual manner. Using this fact we show that the corresponding fractional Riesz potentials and related operators perform an embedding in $ {H^p},p > 0$, analogous to the one for $ {L^p},p > 1$. We also state a theorem concerning the mapping properties of $ f \to h \ast f$, where h is in $ B_\alpha ^{1,\infty }$, which hold only for a restricted range of p.


References [Enhancements On Off] (What's this?)

  • [1] A. P. Calderon and A. Torchinsky, Interpolation between $ {H^p}$ spaces, the complex method, Notices Amer. Math. Soc. 22 (1975), A-166. Abstract #720-42-9.
  • [2] -, Parabolic maximal functions associated with a distribution, Advances in Math. 16 (1975), 1-64. MR 0417687 (54:5736)
  • [3] R. R. Coifman and G. Weiss, Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Math., vol. 242, Springer-Verlag, Berlin and New York, 1971. MR 0499948 (58:17690)
  • [4] C. Fefferman, N. M. Riviere and Y. Sagher, Interpolation between $ {H^p}$ spaces: the real method, Trans. Amer. Math. Soc. 191 (1974), 75-81. MR 0388072 (52:8909)
  • [5] C. Fefferman and E. M. Stein, $ {H^p}$ spaces of several variables, Acta Math. 129 (1972), 137-194. MR 0447953 (56:6263)
  • [6] T. Holmstedt, Interpolation of quasi-normed spaces, Math. Scand. 26 (1970), 177-199. MR 0415352 (54:3440)
  • [7] W. R. Madych, On Littlewood-Paley functions, Studia Math. 50 (1974), 43-63. MR 49 #9536. MR 0344797 (49:9536)
  • [8] J. Peetre, $ {H^p}$ spaces, Univ. of Lund, Unpublished lecture notes, corrected ed., June 1975.
  • [9] N. M. Rivière, Singular integrals and multiplier operators, Ark. Mat. 9 (1971), 243-278. MR 0440268 (55:13146)
  • [10] -, The Fourier method in approximation theory (unpublished preprint).
  • [11] E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Univ. Press, Princeton, N.J., 1971. MR 46 #4102. MR 0304972 (46:4102)
  • [12] A. Torchinsky, Singular integrals in the spaces $ \Lambda (B,X)$, Studia Math. 47 (1973), 165-190. MR 0440306 (55:13181)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46E35

Retrieve articles in all journals with MSC: 46E35


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1977-0450961-1
Article copyright: © Copyright 1977 American Mathematical Society

American Mathematical Society