Products of sequentially compact spaces and the process
Authors:
M. Rajagopalan and R. Grant Woods
Journal:
Trans. Amer. Math. Soc. 232 (1977), 245253
MSC:
Primary 54G20
MathSciNet review:
0451219
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: In this paper we produce a family of sequentially compact, locally compact, first countable, scattered and separable spaces whose product is not countably compact and thus answer a problem of C. T. Scarborough and A. H. Stone [11] in the negative. We do this using the continuum hypothesis. We also produce a completely regular, , sequentially compact space K which is not pcompact for any .
 [1]
A.
V. Archangelskij, On cardinal invariants, General topology and
its relations to modern analysis and algebra, III (Proc. Third Prague
Topological Sympos., 1971) Academia, Prague, 1972, pp. 37–46.
MR
0410629 (53 #14377)
 [2]
Allen
R. Bernstein, A new kind of compactness for topological
spaces, Fund. Math. 66 (1969/1970), 185–193. MR 0251697
(40 #4924)
 [3]
James
Dugundji, Topology, Allyn and Bacon, Inc., Boston, Mass.,
1966. MR
0193606 (33 #1824)
 [4]
Leonard
Gillman and Meyer
Jerison, Rings of continuous functions, The University Series
in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton,
N.J.TorontoLondonNew York, 1960. MR 0116199
(22 #6994)
 [5]
V.
Kannan and M.
Rajagopalan, On scattered spaces, Proc. Amer. Math. Soc. 43 (1974), 402–408. MR 0334150
(48 #12469), http://dx.doi.org/10.1090/S0002993919740334150X
 [6]
V.
Kannan and M.
Rajagopalan, Scattered spaces. II, Illinois J. Math.
21 (1977), no. 4, 735–751. MR 0474180
(57 #13830)
 [7]
M.
Rajagopalan, Scattered spaces. III, J. Indian Math. Soc.
(N.S.) 41 (1977), no. 34, 405–427 (1978). MR 515395
(80c:54044)
 [8]
M.
Rajagopalan, 𝛽𝑁𝑁{𝑝} is not
normal, J. Indian Math. Soc. (N.S.) 36 (1972),
173–176. MR 0321012
(47 #9545)
 [9]
M.
Rajagopalan, A chain compact space which is not strongly
scattered, Israel J. Math. 23 (1976), no. 2,
117–125. MR 0402701
(53 #6517)
 [10]
Mary
Ellen Rudin, Lectures on set theoretic topology, Published for
the Conference Board of the Mathematical Sciences by the American
Mathematical Society, Providence, R.I., 1975. Expository lectures from the
CBMS Regional Conference held at the University of Wyoming, Laramie, Wyo.,
August 12–16, 1974; Conference Board of the Mathematical Sciences
Regional Conference Series in Mathematics, No. 23. MR 0367886
(51 #4128)
 [11]
C.
T. Scarborough and A.
H. Stone, Products of nearly compact
spaces, Trans. Amer. Math. Soc. 124 (1966), 131–147. MR 0203679
(34 #3528), http://dx.doi.org/10.1090/S00029947196602036797
 [12]
J. E. Vaughn, Products of perfectly normal sequentially compact spaces (to appear).
 [13]
M. Rajagopalan and R. Grant Woods, Products of sequentially compact spaces. Notices Amer. Math. Soc. 22 (1975), A333. Abstract #75TG29.
 [14]
M.
Rajagopalan, Some outstanding problems in topology and the
𝑉process, Categorical topology (Proc. Conf., Mannheim, 1975)
Springer, Berlin, 1976, pp. 501–517. Lecture Notes in Math.,
Vol. 540. MR
0448323 (56 #6630)
 [1]
 A. V. Arhangel'skiĭ, On cardinal invariants. General Topology and its Relations to Modern Analysis and Algebra III (Proc. Tnird Prague Topological Sympos., 1971), Academia, Prague; Academic Press, New York, 1972, pp. 3746. MR 49 #3800. MR 0410629 (53:14377)
 [2]
 A. R. Bernstein, A new kind of compactness for topological spaces, Fund. Math. 66 (1969/70), 185193. MR 40 #4924. MR 0251697 (40:4924)
 [3]
 J. Dugundji, Topology, Allyn and Bacon, Boston, Mass.,1966. MR 33 # 1824. MR 0193606 (33:1824)
 [4]
 L. Gillmann and M. Jerison, Rings of continuous functions, Van Nostrand, Princeton, N. J., 1960. MR 22 #6994. MR 0116199 (22:6994)
 [5]
 V. Kannan and M. Rajagopalan, On scattered spaces, Proc. Amer. Math. Soc. 43 (1974), 402408. MR 48 #12469. MR 0334150 (48:12469)
 [6]
 , Scattered spaces. II, Illinois J. Math. (to appear). MR 0474180 (57:13830)
 [7]
 M. Rajagopalan, Scattered spaces. III, J. Indian Math. Soc. 41 (1977). MR 515395 (80c:54044)
 [8]
 , is not normal, J. Indian Math. Soc. (N. S.) 36 (1972), 173176. MR 47 #9545. MR 0321012 (47:9545)
 [9]
 , A chain compact space which is not strongly scattered, Israel J. Math. 23 (1976), 117125. MR 0402701 (53:6517)
 [10]
 M. E. Rudin, Lectures on set theoretic topology, CBMS Regional Conf. Ser. in Math., no. 23. Amer. Math. Soc., Providence, R. I., 1975. MR 51 #4128. MR 0367886 (51:4128)
 [11]
 C. T. Scarborough and A. H. Stone, Products of nearly compact spaces, Trans. Amer. Math. Soc. 124 (1966), 131147. MR 34 #3528. MR 0203679 (34:3528)
 [12]
 J. E. Vaughn, Products of perfectly normal sequentially compact spaces (to appear).
 [13]
 M. Rajagopalan and R. Grant Woods, Products of sequentially compact spaces. Notices Amer. Math. Soc. 22 (1975), A333. Abstract #75TG29.
 [14]
 M. Rajagopalan, Some outstanding problems in topology and the Vprocess (Proc. Mannheim Conf. in Topology, 1975), Lecture Notes in Math., vol. 540, SpringerVerlag, Berlin and New York, 1976, pp. 500517. MR 0448323 (56:6630)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
54G20
Retrieve articles in all journals
with MSC:
54G20
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029947197704512197
PII:
S 00029947(1977)04512197
Keywords:
Scattered spaces,
pcompact,
countably compact,
sequentially compact,
N,
quotients,
partitions
Article copyright:
© Copyright 1977
American Mathematical Society
