Plugging flows

Authors:
Peter B. Percell and F. Wesley Wilson

Journal:
Trans. Amer. Math. Soc. **233** (1977), 93-103

MSC:
Primary 58F10

DOI:
https://doi.org/10.1090/S0002-9947-1977-0448441-2

MathSciNet review:
0448441

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A plug construction is a local modification of a nonsingular flow which severs certain kinds of recurrence properties. In this paper we investigate the effect of plug constructions on minimal sets, the nonwandering set, and the chain recurrent set and the explosions of these sets when a plug construction is perturbed.

**[1]**F. W. Wilson, Jr.,*On the minimal sets of non-singular vector fields*, Ann. of Math. (2)**84**(1966), 529-536. MR**34**#2028. MR**0202155 (34:2028)****[2]**-,*Singularities and periodic solutions which do not attract*, J. Differential Equations**8**(1970), 488-493. MR**43**#2300. MR**0276556 (43:2300)****[3]**C. Pugh, R. Walker and F. W. Wilson,*On Morse-Smale approximations--a counterexample*, J. Differential Equations**23**(1977), 173-182. MR**0436218 (55:9166)****[4]**F. B. Fuller,*Note on trajectories in a solid torus*, Ann. of Math. (2)**56**(1952), 438-439. MR**14**, 556. MR**0051990 (14:556j)****[5]**Paul A. Schweitzer,*Counterexamples to the Seifert conjecture and opening closed leaves of foliations*, Ann. of Math. (2)**100**(1974), 386-400. MR**50**#8557. MR**0356086 (50:8557)****[6]**P. Percell,*Presentations of*3-*manifolds arising from vector fields*, Trans. Amer. Math. Soc.**221**(1976), 361-377. MR**0407857 (53:11627)****[7]**R. Abraham and J. Robbin,*Transversal mappings and flows*, Benjamin, New York, 1967. MR**39**#2181. MR**0240836 (39:2181)****[8]**J. Milnor,*Lecture on the h-cobordism theorem*. Math. Notes, Princeton Univ. Press, Princeton, N. J., 1965. MR**32**#8352. MR**0190942 (32:8352)****[9]**M. Peixoto,*On an approximation theorem of Kupka and Smale*, J. Differential Equations**3**(1967), 214-227. MR**35**#499. MR**0209602 (35:499)****[10]**C. Pugh and M. Shub,*The*-*stability theorem for flows*, Invent. Math.**11**(1970), 150-158. MR**44**#4782. MR**0287579 (44:4782)****[11]**P. Percell,*Structural stability on manifolds with boundary*, Topology**12**(1973), 123-144. MR**48**#1267. MR**0322906 (48:1267)****[12]**D. Rod,*Pathology of invariant sets in the monkey saddle*, J. Differential Equations**14**(1973), 129-170. MR**48**#6562. MR**0328220 (48:6562)****[13]**R. Easton,*Isolating blocks and symbolic dynamics*, J. Differential Equations**17**(1975), 96-118. MR**0370663 (51:6889)****[14]**J. Yorke, Lecture at Univ. of California, Berkeley, 1975.**[15]**R. Elderkin,*Separatrix structure for elliptic flows*, Amer. J. Math.**97**(1975), 221-247. MR**0370661 (51:6887)****[16]**-,*Separatrix structure for regions attracted to solitary periodic solutions*, Proc. Internat. Sympos. Differential Equations (Brown Univ., 1974) (to appear).**[17]**C. Conley,*The gradient structure of a flow*(to appear).

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
58F10

Retrieve articles in all journals with MSC: 58F10

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1977-0448441-2

Keywords:
Periodic solution,
nonwandering set,
chain recurrent set

Article copyright:
© Copyright 1977
American Mathematical Society