Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Group presentations corresponding to spines of $ 3$-manifolds. II


Authors: R. P. Osborne and R. S. Stevens
Journal: Trans. Amer. Math. Soc. 234 (1977), 213-243
MSC: Primary 57A10; Secondary 55A05
DOI: https://doi.org/10.1090/S0002-9947-1977-0488062-9
MathSciNet review: 0488062
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \phi = \langle {a_1}, \ldots ,{a_n}\vert{R_1}, \ldots ,{R_m}\rangle $ denote a group presentation. Let $ {K_\phi }$ denote the corresponding 2-complex. It is well known that every compact 3-manifold has a spine of the form $ {K_\phi }$ for some $ \phi $, but that not every $ {K_\phi }$ is a spine of a compact 3-manifold. Neuwirth's algorithm (Proc. Cambridge Philos. Soc. 64 (1968), 603-613) decides whether $ {K_\phi }$ can be a spine of a compact 3-manifold. However, it is impractical for presentations of moderate length.

In this paper a simple planar graph-like object, called a RR-system (railroad system), is defined. To each RR-system corresponds a whole family of compact orientable 3-manifolds with spines of the form $ {K_\phi }$, where $ \phi $ has a particular form (e.g., $ \langle a,b{a^m}{b^n}{a^p}{b^n},{a^m}{b^n}{a^m}{b^q}\rangle $), subject only to certain requirements of relative primeness of certain pairs of exponents. Conversely, every $ {K_\phi }$ which is a spine of some compact orientable 3-manifold can be obtained in this way.

An equivalence relation on RR-systems is defined so that equivalent RR-systems determine the same family of manifolds. Results of Zieschang are applied to show that the simplest spine of 3-manifolds arises from a particularly simple kind of RR-system called a reduced RR-system. Following Neuwirth, it is shown how to determine when a RR-system gives rise to a collection of closed 3-manifolds.


References [Enhancements On Off] (What's this?)

  • [1] R. H. Bing, Mapping a 3-sphere onto a homotopy 3-sphere, Topology Seminar (Wisconsin, 1965), Princeton Univ. Press, Princeton, N.J., 1966, pp. 89-99. MR 36 #2154. MR 0219071 (36:2154)
  • [2] Joan S. Birman, A normal form in the homeotopy group of a surface of genus 2, with applications to 3-manifolds, Proc. Amer. Math. Soc. 34 (1972), 379-384. MR 45 #4376. MR 0295308 (45:4376)
  • [3] Joan S. Birman and Hugh M. Hilden, The homeomorphism problem for $ {S^3}$, Bull. Amer. Math. Soc. 79 (1973), 1006-1010. MR 47 #7726. MR 0319180 (47:7726)
  • [4] Wolfgang Haken, Various aspects of the three-dimensional Poincaré problem, Topology of Manifolds (Proc. Inst., Univ. of Georgia, 1969), Markham, Chicago, 1970, pp. 140-152. MR 42 #8501. MR 0273624 (42:8501)
  • [5] L. Neuwirth, An algorithm for the construction of 3-manifolds from 2-complexes, Proc. Cambridge Philos. Soc. 64 (1968), 603-613. MR 37 #2231. MR 0226642 (37:2231)
  • [6] -, Some algebra for 3-manifolds, Topology of Manifolds (Proc. Inst., Univ. of Georgia, 1969), Markham, Chicago, 1970, pp. 179-184. MR 43 #2716. MR 0276978 (43:2716)
  • [7] R. Osborne and R. Stevens, Group presentations corresponding to spines of 3-manifolds. I, Amer. J. Math. 96 (1974), 454-471. MR 50 #8529. MR 0356058 (50:8529)
  • [8] R. S. Stevens, Classification of 3-manifolds with certain spines, Trans. Amer. Math. Soc. 205 (1975), 151-166. MR 50# 11245. MR 0358786 (50:11245)
  • [9] Friedhelm Waldhausen, On irreducible 3-manifolds which are sufficiently large, Ann. of Math. (2) 87 (1968), 56-88. MR 36 #7146. MR 0224099 (36:7146)
  • [10] E. C. Zeeman, On the dunce hat, Topology 2 (1963), 341-358. MR 27 #6275. MR 0156351 (27:6275)
  • [11] Heiner Zieschang, Über einfache Kurven auf Vollbrezeln, Abh. Math. Sem. Univ. Hamburg 25 (1961/62), 231-250. MR 26 #6957. MR 0149469 (26:6957)
  • [12] -, On simple systems of paths on complete pretzels, Mat. Sb. 66 (108) (1965), 230-239; English transl., Amer. Math. Soc. Transl. (2) 92 (1970), 127-137. MR 33 #1849. MR 0193633 (33:1849)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57A10, 55A05

Retrieve articles in all journals with MSC: 57A10, 55A05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1977-0488062-9
Keywords: Compact orientable 3-manifold, spine, 2-complex, group presentation, P-graph
Article copyright: © Copyright 1977 American Mathematical Society

American Mathematical Society