Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

Cartan subalgebras of simple Lie algebras


Author: Robert Lee Wilson
Journal: Trans. Amer. Math. Soc. 234 (1977), 435-446
MSC: Primary 17B20
MathSciNet review: 0480650
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let L be a finite-dimensional simple Lie algebra over an algebraically closed field of characteristic $ p > 7$. Let H be a Cartan subalgebra of L, let $ L = H + {\Sigma _{\gamma \in \Gamma }}{L_\gamma }$ be the Cartan decomposition of L with respect to H, and let $ \bar H$ be the restricted subalgebra of Der L generated by ad H. Let T denote the maximal torus of $ \bar H$ and I denote the nil radical of $ \bar H$. Then $ \bar H = T + I$. Consequently, each $ \gamma \in \Gamma $ is a linear function on H.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 17B20

Retrieve articles in all journals with MSC: 17B20


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1977-0480650-9
PII: S 0002-9947(1977)0480650-9
Article copyright: © Copyright 1977 American Mathematical Society