The porous medium equation in one dimension
Author:
Barry F. Knerr
Journal:
Trans. Amer. Math. Soc. 234 (1977), 381415
MSC:
Primary 35K15
MathSciNet review:
0492856
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We consider a second order nonlinear degenerate parabolic partial differential equation known as the porous medium equation, restricting our attention to the case of one space variable and to the Cauchy problem where the initial data are nonnegative and have compact support consisting of a bounded interval. Solutions are known to have compact support for each fixed time. In this paper we study the lateral boundary, called the interface, of the support of the solution in . It is shown that the interface consists of two monotone Lipschitz curves which satisfy a specified differential equation. We then prove results concerning the behavior of the interface curves as t approaches zero and as t approaches infinity, and prove that the interface curves are strictly monotone except possibly near . We conclude by proving some facts about the behavior of the solution in .
 [1]
D.
G. Aronson, Regularity properties of flows through porous media:
The interface., Arch. Rational Mech. Anal. 37 (1970),
1–10. MR
0255996 (41 #656)
 [2]
D.
G. Aronson, Regularity properties of flows through porous media: A
counterexample., SIAM J. Appl. Math. 19 (1970),
299–307. MR 0265774
(42 #683)
 [3]
D.
G. Aronson, Regularity propeties of flows through porous
media, SIAM J. Appl. Math. 17 (1969), 461–467.
MR
0247303 (40 #571)
 [4]
G.
I. Barenblatt, On a class of exact solutions of the plane
onedimensional problem of unsteady filtration of a gas in a porous
medium, Akad. Nauk SSSR. Prikl. Mat. Meh. 17 (1953),
739–742 (Russian). MR 0064556
(16,298h)
 [5]
G.
I. Barenblatt, On some unsteady motions of a liquid and gas in a
porous medium, Akad. Nauk SSSR. Prikl. Mat. Meh. 16
(1952), 67–78 (Russian). MR 0046217
(13,700a)
 [6]
Avner
Friedman, Partial differential equations of parabolic type,
PrenticeHall, Inc., Englewood Cliffs, N.J., 1964. MR 0181836
(31 #6062)
 [7]
A.
S. Kalašnikov, The differential properties of the
generalized solutions of equations of the type of nonstationary
filtration, Vestnik Moskov. Univ. Ser. I Mat. Meh. 29
(1974), no. 1, 62–68 (Russian, with English summary). Collection
of articles dedicated to the memory of Ivan Georgievič
Petrovskiĭ. (Russian). MR 0342834
(49 #7578)
 [8]
A.
S. Kalašnikov, Equations of the type of a nonstationary
filtration with infinite rate of propagation of perturbations, Vestnik
Moskov. Univ. Ser. I Mat. Meh. 27 (1972), no. 6,
45–49 (Russian, with English summary). MR 0336073
(49 #849)
 [9]
A.
S. Kalašnikov, Formation of singularities in solutions of
the equation of nonstationary filtration, Z. Vyčisl. Mat. i
Mat. Fiz. 7 (1967), 440–444 (Russian). MR 0211058
(35 #1940)
 [10]
S.
Kamenomostskaya, The asymptotic behavior of the solution of the
filtration equation, Israel J. Math. 14 (1973),
76–87. MR
0315292 (47 #3841)
 [11]
O.
A. Ladyženskaja, V.
A. Solonnikov, and N.
N. Ural′ceva, Linear and quasilinear equations of parabolic
type, Translated from the Russian by S. Smith. Translations of
Mathematical Monographs, Vol. 23, American Mathematical Society,
Providence, R.I., 1968 (Russian). MR 0241822
(39 #3159b)
 [12]
M. Muskat, The flow of homogeneous fluids through porous media, McGrawHill, New York, 1937.
 [13]
Olga
Oleĭnik, On some degenerate quasilinear parabolic
equations, Seminari 1962/63 Anal. Alg. Geom. e Topol., Vol. 1, Ist.
Naz. Alta Mat., Ediz. Cremonese, Rome, 1965, pp. 355–371. MR 0192205
(33 #432)
 [14]
O.
A. Oleĭnik, A.
S. Kalašinkov, and YuĭLin′
Čžou, The Cauchy problem and boundary problems for
equations of the type of nonstationary filtration, Izv. Akad. Nauk
SSSR. Ser. Mat. 22 (1958), 667–704 (Russian). MR 0099834
(20 #6271)
 [15]
R.
E. Pattle, Diffusion from an instantaneous point source with a
concentrationdependent coefficient, Quart. J. Mech. Appl. Math.
12 (1959), 407–409. MR 0114505
(22 #5326)
 [16]
M.
H. Protter, Properties of solutions of parabolic equations and
inequalities, Canad. J. Math. 13 (1961),
331–345. MR 0153982
(27 #3943)
 [17]
E.
S. Sabinina, On the Cauchy problem for the equation of
nonstationary gas filtration in several space variables, Soviet Math.
Dokl. 2 (1961), 166–169. MR 0158190
(28 #1416)
 [1]
 D. G. Aronson, Regularity properties of flows through porous media: The interface, Arch. Rational Mech. Anal. 37 (1970), 110. MR 41 #656. MR 0255996 (41:656)
 [2]
 , Regularity properties of flows through porous media: A counterexample, SIAM J. Appl. Math. 19 (1970), 299307. MR 42 #683. MR 0265774 (42:683)
 [3]
 , Regularity properties of flows through porous media, SIAM J. Appl Math. 17 (1969), 461467. MR 40 #571. MR 0247303 (40:571)
 [4]
 G. I. Barenblatt, On one class of exact solutions of the plane onedimensional problem of unsteady filtration of a gas in a porous medium, Akad. Nauk SSSR Prikl. Mat. Meh. 17 (1953), 739742. MR 16, 298. MR 0064556 (16:298h)
 [5]
 , On some unsteady motions of a liquid and a gas in a porous medium, Akad. Nauk SSSR Prikl. Mat. Meh. 16 (1952), 6778. MR 13, 700. MR 0046217 (13:700a)
 [6]
 A. Friedman, Partial differential equations of parabolic type, PrenticeHall, Englewood Cliffs, N.J., 1964. MR 31 #6062. MR 0181836 (31:6062)
 [7]
 A. S. Kalašnikov, On the differential properties of generalized solutions of equations of the nonsteady filtration type, Vestnik Moskov. Univ. Ser. I Mat. Meh. 29 (1974), 6268 = Moscow Univ. Math. Bull. 29 (1974), 4853. MR 49 #7578. MR 0342834 (49:7578)
 [8]
 , On equations of the nonstationary filtration type in which the perturbation is propagated at infinite velocity, Vestnik. Moscov. Univ. Ser. I Mat. Meh. 27 (1972), 4549 = Moscow Univ. Math. Bull. 27 (1972), 104108 (1973). MR 49 #849. MR 0336073 (49:849)
 [9]
 , Formation of singularities in solutions of the equation of nonstationary filtration, Ž. Vyčisl. Mat. i Mat. Fiz. 7 (1967), 440444. MR 35 #1940. MR 0211058 (35:1940)
 [10]
 S. Kamenomostskaya, The asymptotic behavior of the solution of the filtration equation, Israel J. Math. 14 (1973), 7687. MR 47 #3841. MR 0315292 (47:3841)
 [11]
 O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and quasilinear equations of parabolic type, ``Nauka", Moscow, 1967; English transl., Transl. Math. Monographs, vol. 23, Amer. Math. Soc., Providence, R. I., 1968. MR 39 #3159 a,b. MR 0241822 (39:3159b)
 [12]
 M. Muskat, The flow of homogeneous fluids through porous media, McGrawHill, New York, 1937.
 [13]
 O. A. Oleĭnik, On some degenerate quasilinear parabolic equations, Seminari 1962/63 Anal. Alg. Geom. e Topol., Vol. 1, Ist.Naz. Alta Mat. Ediz. Cremonese, Rome, 1965, pp. 355371. MR 33 #432. MR 0192205 (33:432)
 [14]
 O. A. Oleĭnik, A. S. Kalašnikov and YuiLin' Čžou, The Cauchy problem and boundary problems for equations of the type of nonstationary filtration, Izv. Akad. Nauk SSSR Ser. Mat. 22 (1958), 667704. (Russian) MR 20 #6271. MR 0099834 (20:6271)
 [15]
 R. E. Prattle, Diffusion from an instantaneous point source with a concentrationdependent coefficient, Quart. J. Mech. Appl. Math. 12 (1959), 407409. MR 0114505 (22:5326)
 [16]
 M. H. Protter, Properties of solutions of parabolic equations and inequalities, Canad. J. Math. 13 (1961), 331345. MR 27 #3943. MR 0153982 (27:3943)
 [17]
 E. S. Sabinina, On the Cauchy problem for the equation of nonstationary gas filtration in several space variables, Dokl. Akad. Nauk SSSR 136 (1961), 10341037 = Soviet Math. Dokl. 2 (1961), 166169. MR 28 #1416. MR 0158190 (28:1416)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC:
35K15
Retrieve articles in all journals
with MSC:
35K15
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029947197704928563
PII:
S 00029947(1977)04928563
Keywords:
Nonlinear degenerate parabolic second order equation,
porous medium
Article copyright:
© Copyright 1977
American Mathematical Society
